AP-2 is a key regulator of the endocytic protein machinery driving clathrin-coated vesicle (CCV) formation. One critical function, mediated primarily by the AP-2 alpha-ear, is the recruitment of accessory proteins. NECAPs are alpha-ear-binding proteins that enrich on CCVs.
View Article and Find Full Text PDFClathrin-coated vesicles (CCVs) are responsible for the endocytosis of multiple cargo, including synaptic vesicle membranes. We now describe a new CCV protein, termed connecdenn, that contains an N-terminal DENN (differentially expressed in neoplastic versus normal cells) domain, a poorly characterized protein module found in multiple proteins of unrelated function and a C-terminal peptide motif domain harboring three distinct motifs for binding the alpha-ear of the clathrin adaptor protein 2 (AP-2). Connecdenn coimmunoprecipitates and partially colocalizes with AP-2, and nuclear magnetic resonance and peptide competition studies reveal that all three alpha-ear-binding motifs contribute to AP-2 interactions.
View Article and Find Full Text PDFThe adaptor proteins AP-2 and AP-1/GGAs are essential components of clathrin coats at the plasma membrane and trans-Golgi network, respectively. The adaptors recruit accessory proteins to clathrin-coated pits, which is dependent on the adaptor ear domains engaging short peptide motifs in the accessory proteins. Here, we perform an extensive mutational analysis of a novel WXXF-based motif that functions to mediate the binding of an array of accessory proteins to the alpha-adaptin ear domain of AP-2.
View Article and Find Full Text PDFEnthoprotin, a newly identified component of clathrin-coated vesicles, interacts with the trans-Golgi network (TGN) clathrin adapters AP-1 and GGA2. Here we perform a multi-faceted analysis of the site in enthoprotin that is responsible for the binding to the gamma-adaptin ear (gamma-ear) domain of AP-1. Alanine scan mutagenesis and nuclear magnetic resonance (NMR) studies reveal the full extent of the site as well as critical residues for this interaction.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2003
We report on the three dimensional structure of an RNA hairpin containing a 2',5'-linked tetraribonucleotide loop, namely, 5'-rGGAC(UUCG)GUCC-3' (where UUCG = U(2'p5')U(2'p5')C(2'p5')G(2'p5')). We show that the 2',5'-linked RNA loop adopts a conformation that is quite different from that previously observed for the native 3',5'-linked RNA loop. The 2',5'-RNA loop is stabilized by (a) U:G wobble base pairing, with both bases in the anti conformation, (b) extensive base stacking, and (c) sugar-base contacts, all of which contribute to the extra stability of this hairpin structure.
View Article and Find Full Text PDFWe have recently shown that hairpins containing 2',5'-linked RNA loops exhibit superior thermodynamic stability compared to native hairpins comprised of 3',5'-RNA loops [Hannoush, R. N.; Damha, M.
View Article and Find Full Text PDFThe structure of human BCL-w, an anti-apoptotic member of the BCL-2 family, was determined by triple-resonance NMR spectroscopy and molecular modeling. Introduction of a single amino acid substitution (P117V) significantly improved the quality of the NMR spectra obtained. The cytosolic domain of BCL-w consists of 8 alpha-helices, which adopt a fold similar to that of BCL-xL, BCL-2, and BAX proteins.
View Article and Find Full Text PDF