J Chem Theory Comput
January 2013
Using various two-step strategies, we examined how to accurately locate transition states (TS) of reactions using the example of eight reactions at metal surfaces with 14-33 moving atoms. These procedures combined four path-finding methods for locating approximate TS structures (nudged elastic band, standard string, climbing image string, and searching string, using a conjugate gradient or a modified steepest-descent method for optimization and two types of coordinate systems) with subsequent local refinement by two dimer methods. The dimer-Lanczos variant designed for this study required on average 20% fewer gradient calls than the standard dimer method.
View Article and Find Full Text PDFTransition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method.
View Article and Find Full Text PDFWe suggest an approximate relativistic model for economical all-electron calculations on molecular systems that exploits an atomic ansatz for the relativistic projection transformation. With such a choice, the projection transformation matrix is by definition both transferable and independent of the geometry. The formulation is flexible with regard to the level at which the projection transformation is approximated; we employ the free-particle Foldy-Wouthuysen and the second-order Douglas-Kroll-Hess variants.
View Article and Find Full Text PDFExperimental findings imply that edge sites (and other defects) on Pd nanocrystallites exposing mainly (111) facets in supported model catalysts are crucial for catalyst modification via deposition of CH(x) (x = 0-3) byproducts of methanol decomposition. To explore this problem computationally, we applied our recently developed approach to model realistically metal catalyst particles as moderately large three-dimensional crystallites. We present here the first results of this advanced approach where we comprehensively quantify the reactivity of a metal catalyst in an important chemical process.
View Article and Find Full Text PDFPolarization-resolved optical spectra of coinage metal monomers and dimers Mn (M=Cu, Ag, Au; n=1, 2) at ideal O2- sites of MgO(001) as well as at oxygen vacancies, Fs and Fs+, of that surface were established using a computational approach based on linear response time-dependent density functional theory. Calculations were performed for structures determined by applying a generalized-gradient density functional method to cluster models embedded in an elastic polarizable environment. This embedding scheme provides an accurate description of substrate relaxation and long-range electrostatic interaction.
View Article and Find Full Text PDFUsing a set of model reactions, we estimated the heat of formation of gaseous PuO2(2+) from quantum-chemical reaction enthalpies and experimental heats of formation of reference species. To this end, we carried out relativistic density functional calculations on the molecules PuO(2)2+, PuO2, PuF6, and PuF4. We used a revised variant (PBEN) of the Perdew-Burke-Ernzerhof gradient-corrected exchange-correlation functional, and we accounted for spin-orbit interaction in a self-consistent fashion.
View Article and Find Full Text PDFBy using a set of model reactions, we estimated the heat of formation of gaseous UO2(2+) from quantum-chemical reaction enthalpies and experimental heats of formation of reference species. For this purpose, we performed relativistic density functional calculations for the molecules UO2(2+), UO2, UF6, and UF5. We used two gradient-corrected exchange-correlation functionals (revised Perdew-Burke-Ernzerhof (PBEN) and Becke-Perdew (BP)) and we accounted for spin-orbit interaction in a self-consistent fashion.
View Article and Find Full Text PDFWe elaborate the two-component Douglas-Kroll reduction of the Dirac-Kohn-Sham problem of relativistic density-functional theory as introduced by Matveev and Rosch [J. Chem. Phys.
View Article and Find Full Text PDFSingle d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO.
View Article and Find Full Text PDF