Publications by authors named "Alexei Souvorov"

A novel approach to X-ray diffraction data analysis for nondestructive determination of the shape of nanoscale particles and clusters in three-dimensions is illustrated with representative examples of composite nanostructures. The technique is insensitive to the X-ray coherence, which allows 3-D reconstruction of a modal image without tomographic synthesis and in situ analysis of large (over a several cubic millimeters) volume of material with a spatial resolution of few nanometers, rendering the approach suitable for laboratory facilities.

View Article and Find Full Text PDF

A multiresolution (multiscale) analysis based on wavelet transform is applied to the problem of optical phase retrieval from the intensity measured in the in-line geometry (lens-free). The transport-of-intensity equation and the Fresnel diffraction integral are approximated in terms of a wavelet basis. A solution to the phase retrieval problem can be efficiently found in both cases using the multiresolution concept.

View Article and Find Full Text PDF

The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors.

View Article and Find Full Text PDF

An elliptical mirror for X-ray microfocusing was manufactured using the new fabrication methods of elastic emission machining and plasma chemical vaporization machining. Surface profiles measured using stitching interferometry showed a maximum deviation around the ideal figure of 7 nm peak-to-valley. The mirror showed nearly diffraction-limited focusing performance, with a 200 nm line width at the focus.

View Article and Find Full Text PDF