A novel approach to X-ray diffraction data analysis for nondestructive determination of the shape of nanoscale particles and clusters in three-dimensions is illustrated with representative examples of composite nanostructures. The technique is insensitive to the X-ray coherence, which allows 3-D reconstruction of a modal image without tomographic synthesis and in situ analysis of large (over a several cubic millimeters) volume of material with a spatial resolution of few nanometers, rendering the approach suitable for laboratory facilities.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2006
A multiresolution (multiscale) analysis based on wavelet transform is applied to the problem of optical phase retrieval from the intensity measured in the in-line geometry (lens-free). The transport-of-intensity equation and the Fresnel diffraction integral are approximated in terms of a wavelet basis. A solution to the phase retrieval problem can be efficiently found in both cases using the multiresolution concept.
View Article and Find Full Text PDFThe intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors.
View Article and Find Full Text PDFAn elliptical mirror for X-ray microfocusing was manufactured using the new fabrication methods of elastic emission machining and plasma chemical vaporization machining. Surface profiles measured using stitching interferometry showed a maximum deviation around the ideal figure of 7 nm peak-to-valley. The mirror showed nearly diffraction-limited focusing performance, with a 200 nm line width at the focus.
View Article and Find Full Text PDF