In this study we elucidate antioxidative properties of the mushroom Ganoderma applanatum (Pers.) Pat. enhanced by submerged culture with para-hydroxyphenolic compounds and tea leaf extracts.
View Article and Find Full Text PDFPrevious GLC work with several 2- and 4-substituted phenols and anilines, as well as with a pyrrolizidine alcohol, had determined the difference between the heats of dissolution of two positional isomers in a strong polar stationary liquid phase; one of these isomers forms an intramolecular hydrogen bond (intra-HB) and the other has no such bond for steric reasons. The energies of the intermolecular hydrogen bonds (inter-HBs), ΔH(inter-HB), formed by the 1,2- and 1,4-isomers with the molecules of a polar phase had been assumed approximately equal, so the difference between them could be ignored. The same assumption had been made for the energies of nonspecific interactions (NSIs), ΔH(NSI).
View Article and Find Full Text PDFThe present paper reports for the first time the transformation of an organic selenium compound into red selenium (Se), which causes the intense red pigmentation of Lentinula edodes (shiitake mushroom) mycelia. The biotransformation of 1,5-diphenyl-3-selenopentanedione-1,5 (diacetophenonyl selenide, preparation DAPS-25) was studied in liquid- and solid-phase cultures of L. edodes.
View Article and Find Full Text PDFThe role of spatial and electron structure, hydrophobic properties and concentration of organoselenium compounds on their interaction with fungal metabolites--extracellular lectins of Lentinula edodes (shiitake mushroom) has been considered. By the hybrid method of density functional theory at the B3LYP/6-31G(d,p) theory level, spatial and electronic structure of the 1,5-diphenyl-3-selenopentanedione-1,5 (preparation DAPS-25), 1,5-di(4-methoxyphenyl)-3-selenopentanedione-1,5 and 1,5-di(4-ethoxyphenyl)-3-selenopentanedione-1,5 molecules has been studied. The above molecules have been stated to be substantially similar to each other by their electronic and spatial characteristics.
View Article and Find Full Text PDFIntramolecular hydrogen bonding (IHB) interactions and molecular structures of 2-nitrosophenol, nitrosonaphthols, and their quinone-monooxime tautomers were investigated at ab initio and density functional theory (DFT) levels. The geometry optimization of the structures studied was performed without any geometrical restrictions. Possible conformations with different types of the IHB of the tautomers were considered to understand the nature of the HB among these conformers.
View Article and Find Full Text PDFA theoretical quantum chemical study of the intramolecular hydrogen bonding interactions in 8-mercaptoquinoline has been carried out. Special attention has been paid to the rotation of S-H bond and intramolecular proton-transfer reactions. Therewith, the B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p), MPW1K/6-311++G(d,p), MPW1K/6-31+G(2d,2p), BH&HLYP/6-311++G(d,p), and G96LYP/6-311++G(d,p) methods have been used.
View Article and Find Full Text PDFA computational study of the monomers and hydrogen-bonded dimers of 2-pyrrolidone was executed at different DFT levels and basis sets. The above dimeric complexes were treated theoretically to elucidate the nature of the intermolecular hydrogen bonds, geometry, thermodynamic parameters, interaction energies, and charge transfer. The processes of dimer formation from monomers and concerted reactions of double proton transfer were considered.
View Article and Find Full Text PDF