GCN2 is a conserved receptor kinase activating the integrated stress response (ISR) in eukaryotic cells. The ISR kinases detect accumulation of stress molecules and reprogram translation from basal tasks to preferred production of cytoprotective proteins. GCN2 stands out evolutionarily among all protein kinases due to the presence of a histidyl-tRNA synthetase-like (HRSL) domain, which arises only in GCN2 and is located next to the kinase domain (KD).
View Article and Find Full Text PDFUnlabelled: GCN2 is a conserved receptor kinase activating the Integrated Stress Response (ISR) in eukaryotic cells. The ISR kinases detect accumulation of stress molecules and reprogram translation from basal tasks to preferred production of cytoprotective proteins. GCN2 stands out evolutionarily among all protein kinases due to the presence of a h istidyl t R NA s ynthetase-like (HRSL) domain, which arises only in GCN2 and is located next to the kinase domain.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
November 2023
Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis.
View Article and Find Full Text PDFAll kingdoms of life produce essential nicotinamide dinucleotide NADP(H) using NAD kinases (NADKs). A panel of published NADK structures from bacteria, eukaryotic cytosol, and yeast mitochondria revealed similar tetrameric enzymes. Here, we present the 2.
View Article and Find Full Text PDFThe human microbiome encodes a large repertoire of biochemical enzymes and pathways, most of which remain uncharacterized. Here, using a metagenomics-based search strategy, we discovered that bacterial members of the human gut and oral microbiome encode enzymes that selectively phosphorylate a clinically used antidiabetic drug, acarbose, resulting in its inactivation. Acarbose is an inhibitor of both human and bacterial α-glucosidases, limiting the ability of the target organism to metabolize complex carbohydrates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Double-stranded RNA (dsRNA), a hallmark viral material that activates antiviral interferon (IFN) responses, can appear in human cells also in the absence of viruses. We identify phosphorothioate DNAs (PS DNAs) as triggers of such endogenous dsRNA (endo-dsRNA). PS DNAs inhibit decay of nuclear RNAs and induce endo-dsRNA via accumulation of high levels of intronic and intergenic inverted retroelements (IIIR).
View Article and Find Full Text PDFViral and endogenous double-stranded RNA (dsRNA) is a potent trigger for programmed RNA degradation by the 2-5A/RNase L complex in cells of all mammals. This 2-5A-mediated decay (2-5AMD) is a conserved stress response switching global protein synthesis from homeostasis to production of interferons (IFNs). To understand this mechanism, we examined 2-5AMD in human cells and found that it triggers polysome collapse characteristic of inhibited translation initiation.
View Article and Find Full Text PDFNocturnin (NOCT) is a rhythmically expressed protein that regulates metabolism under the control of circadian clock. It has been proposed that NOCT deadenylates and regulates metabolic enzyme mRNAs. However, in contrast to other deadenylases, purified NOCT lacks the deadenylase activity.
View Article and Find Full Text PDFCells of all mammals recognize double-stranded RNA (dsRNA) as a foreign material. In response, they release interferons (IFNs) and activate a ubiquitously expressed pseudokinase/endoribonuclease RNase L. RNase L executes regulated RNA decay and halts global translation.
View Article and Find Full Text PDFNocturnin (NOCT) helps the circadian clock to adjust metabolism according to day and night activity. NOCT is upregulated in early evening and it has been proposed that NOCT serves as a deadenylase for metabolic enzyme mRNAs. We present a 2.
View Article and Find Full Text PDFWe identified a non-synonymous mutation in Oas2 (I405N), a sensor of viral double-stranded RNA, from an ENU-mutagenesis screen designed to discover new genes involved in mammary development. The mutation caused post-partum failure of lactation in healthy mice with otherwise normally developed mammary glands, characterized by greatly reduced milk protein synthesis coupled with epithelial cell death, inhibition of proliferation and a robust interferon response. Expression of mutant but not wild type Oas2 in cultured HC-11 or T47D mammary cells recapitulated the phenotypic and transcriptional effects observed in the mouse.
View Article and Find Full Text PDFMammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism.
View Article and Find Full Text PDFADAR1 isoforms are adenosine deaminases that edit and destabilize double-stranded RNA reducing its immunostimulatory activities. Mutation of leads to a severe neurodevelopmental and inflammatory disease of children, Aicardi-Goutiéres syndrome. In mice, mutations are embryonic lethal but are rescued by mutation of the or genes, which function in IFN induction.
View Article and Find Full Text PDFDouble-stranded RNA (dsRNA) activates the innate immune system of mammalian cells and triggers intracellular RNA decay by the pseudokinase and endoribonuclease RNase L. RNase L protects from pathogens and regulates cell growth and differentiation by destabilizing largely unknown mammalian RNA targets. We developed an approach for transcriptome-wide profiling of RNase L activity in human cells and identified hundreds of direct RNA targets and nontargets.
View Article and Find Full Text PDFTwo ER membrane-resident transmembrane kinases, IRE1 and PERK, function as stress sensors in the unfolded protein response. IRE1 also has an endoribonuclease activity, which initiates a non-conventional mRNA splicing reaction, while PERK phosphorylates eIF2α. We engineered a potent small molecule, IPA, that binds to IRE1's ATP-binding pocket and predisposes the kinase domain to oligomerization, activating its RNase.
View Article and Find Full Text PDFThe mammalian innate immune system uses several sensors of double-stranded RNA (dsRNA) to develop the interferon response. Among these sensors are dsRNA-activated oligoadenylate synthetases (OAS), which produce signaling 2',5'-linked RNA molecules (2-5A) that activate regulated RNA decay in mammalian tissues. Different receptors from the OAS family contain one, two, or three copies of the 2-5A synthetase domain, which in several instances evolved into pseudoenzymes.
View Article and Find Full Text PDFInsufficient protein-folding capacity in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR). In the ER lumen, accumulation of unfolded proteins activates the transmembrane ER-stress sensor Ire1 and drives its oligomerization. In the cytosol, Ire1 recruits HAC1 mRNA, mediating its non-conventional splicing.
View Article and Find Full Text PDFOne of the hallmark mechanisms activated by type I interferons (IFNs) in human tissues involves cleavage of intracellular RNA by the kinase homology endoribonuclease RNase L. We report 2.8 and 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2013
The human sensor of double-stranded RNA (dsRNA) oligoadenylate synthetase 1 (hOAS1) polymerizes ATP into 2',5'-linked iso-RNA (2-5A) involved in innate immunity, cell cycle, and differentiation. We report the crystal structure of hOAS1 in complex with dsRNA and 2'-deoxy ATP at 2.7 Å resolution, which reveals the mechanism of cytoplasmic dsRNA recognition and activation of oligoadenylate synthetases.
View Article and Find Full Text PDF2',5'-linked oligoadenylates (2-5As) serve as conserved messengers of pathogen presence in the mammalian innate immune system. 2-5As induce self-association and activation of RNase L, which cleaves cytosolic RNA and promotes the production of interferons (IFNs) and cytokines driven by the transcription factors IRF-3 and NF-κB. We report that human RNase L is activated by forming high-order complexes, reminiscent of the mode of activation of the phylogenetically related transmembrane kinase/RNase Ire1 in the unfolded protein response.
View Article and Find Full Text PDFThe unfolded protein response (UPR) is a network of intracellular signaling pathways that maintain the protein-folding capacity of the endoplasmic reticulum (ER) in eukaryotic cells. Dedicated molecular sensors embedded in the ER membrane detect incompletely folded or unfolded proteins in the ER lumen and activate a transcriptional program that increases the abundance of the ER according to need. In metazoans the UPR additionally regulates translation and thus relieves unfolded protein load by globally reducing protein synthesis.
View Article and Find Full Text PDFBackground: Ire1 is a signal transduction protein in the endoplasmic reticulum (ER) membrane that serves to adjust the protein-folding capacity of the ER according to the needs of the cell. Ire1 signals, in a transcriptional program, the unfolded protein response (UPR) via the coordinated action of its protein kinase and RNase domains. In this study, we investigated how the binding of cofactors to the kinase domain of Ire1 modulates its RNase activity.
View Article and Find Full Text PDFBackground: The unfolded protein response (UPR) controls the protein folding capacity of the endoplasmic reticulum (ER). Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase) domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes.
View Article and Find Full Text PDFAccumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER) activates the unfolded protein response (UPR). Ire1, an ER-resident transmembrane kinase/RNase, senses the protein folding status inside the ER. When activated, Ire1 oligomerizes and trans-autophosphorylates, activating its RNase and initiating a nonconventional mRNA splicing reaction.
View Article and Find Full Text PDFRestrictocin and related fungal endoribonucleases from the α-sarcin family site-specifically cleave the sarcin/ricin loop (SRL) on the ribosome to inhibit translation and ultimately trigger cell death. Previous studies showed that the SRL folds into a bulged-G motif and tetraloop, with restrictocin achieving a specificity of ∼1000-fold by recognizing both motifs only after the initial binding step. Here, we identify contacts within the protein-RNA interface and determine the extent to which each one contributes to enzyme specificity by examining the effect of protein mutations on the cleavage of the SRL substrate compared to a variety of other RNA substrates.
View Article and Find Full Text PDF