Publications by authors named "Alexei Erko"

We present a laser-driven, bright, and broadband (50 to 1500 eV) soft-x-ray plasma source with <10 ps pulse duration. This source is employed in two complementary, laboratory-scale beamlines for time-resolved, magnetic resonant scattering and spectroscopy, as well as near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. In both beamlines, dedicated reflection zone plates (RZPs) are used as single optical elements to capture, disperse, and focus the soft x rays, reaching resolving powers up to E/ΔE > 1000, with hybrid RZPs at the NEXAFS beamline retaining a consistent E/ΔE > 500 throughout the full spectral range, allowing for time-efficient data acquisition.

View Article and Find Full Text PDF

The extension of the pump-probe approach known from UV/VIS spectroscopy to very short wavelengths together with advanced simulation techniques allows a detailed analysis of excited-state dynamics in organic molecules or biomolecular structures on a nanosecond to femtosecond time level. Optical pump soft X-ray probe spectroscopy is a relatively new approach to detect and characterize optically dark states in organic molecules, exciton dynamics or transient ligand-to-metal charge transfer states. In this paper, we describe two experimental setups for transient soft X-ray absorption spectroscopy based on an LPP emitting picosecond and sub-nanosecond soft X-ray pulses in the photon energy range between 50 and 1500 eV.

View Article and Find Full Text PDF

We present a novel soft x-ray spectrometer for ultrafast absorption spectroscopy utilizing table-top femtosecond high-order harmonic sources. Where most commercially available spectrometers rely on spherical variable line space gratings with a typical efficiency on the order of 3% in the first diffractive order, this spectrometer, based on a Hettrick-Underwood design, includes a reflective zone plate as a dispersive element. An improved efficiency of 12% at the N K-edge is achieved, accompanied by a resolving power of 890.

View Article and Find Full Text PDF

We present a simple and precise method to minimize aberrations of mirror-based, wavelength-dispersive spectrometers for the extreme ultraviolet (XUV) and soft x-ray domain. The concept enables an enhanced resolving power $ E/\Delta E $E/ΔE, in particular, close to the diffraction limit over a spectral band of a few percent around the design energy of the instrument. Our optical element, the "diffractive wavefront corrector" (DWC), is individually shaped to the form and figure error of the mirror profile and might be written directly with a laser on a plane and even strongly curved substrates.

View Article and Find Full Text PDF

Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally , is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state a distinct blue shift of L-edge absorption energies with increasing oxidation state.

View Article and Find Full Text PDF

X-ray spectroscopy is a method, ideally suited for investigating the electronic structure of matter, which has been enabled by the rapid developments in light sources and instruments. The x-ray fluorescence lines of life-relevant elements such as carbon, nitrogen, and oxygen are located in the soft x-ray regime and call for suitable spectrometer devices. In this Letter, we present a high-resolution spectrum of liquid water, recorded with a soft x-ray spectrometer based on a reflection zone plate (RZP) design.

View Article and Find Full Text PDF

An erratum is presented to correct the typographical errors concerning the composition of the multilayer used in the experiment in Opt. Lett. 42, 1915.

View Article and Find Full Text PDF

A collimating polycapillary half lens, traditionally used in the medium and hard X-ray band, is operated at a photon energy of 36 eV for the first time. While the transmission still exceeds 50%, the measured and simulated spatial resolution and angular divergence approach 0.4 mm or less and at most 20 mrad, respectively.

View Article and Find Full Text PDF

X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties.

View Article and Find Full Text PDF

We present a newly designed compact and flexible soft X-ray spectrometer for resonant inelastic X-ray scattering (RIXS) studies within an energy range from 380 eV to 410 eV, which would include the K alpha emission lines of vital elements like nitrogen. We utilized an off-axis reflection zone plate (RZP) as the wavelength selective element with a maximum line density of 10000 l/mm. A higher energy resolution over a broader range of ± 15 eV around the designed energy was achieved by displacing the RZP.

View Article and Find Full Text PDF

A functional test for a pulse picker for synchrotron radiation was performed at Diamond Light Source. The purpose of a pulse picker is to select which pulse from the synchrotron hybrid-mode bunch pattern reaches the experiment. In the present work, the Bragg reflection on a Si/BC multilayer was modified using surface acoustic wave (SAW) trains.

View Article and Find Full Text PDF

X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (LaGaSiO) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice.

View Article and Find Full Text PDF

We simulate a proof-of-principle design of a wavelength dispersive, parallel spectrometer for use in resonant inelastic x-ray scattering (RIXS). The instrument relies on a multiple-channel reflection zone plate (RZP) array, enabling the recording of fluorescence spectra from an acceptance angle of 18  arc min×19  arc min with a mainly source-size-limited resolving power of (0.2-2.

View Article and Find Full Text PDF

X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed.

View Article and Find Full Text PDF

We have developed an electron beam excitation ultra-soft X-ray add-on device for a scanning electron microscope with a reflective zone plate mulichannel spectrometer in order to analyse ultra-light elements such as Li and B. This spectrometer has high (λ/Δλ~100) resolving power in the energy range of 45 eV - 1120 eV. Metallic Li samples were examined and fluorescence spectra successfully measured.

View Article and Find Full Text PDF

The feasibility of an off-axis x-ray reflection zone plate to perform wavelength-dispersive spectroscopy, on-axis point focusing, and two-dimensional imaging is demonstrated by means of one and the same diffractive optical element (DOE) at a synchrotron radiation facility. The resolving power varies between 3×10 and 4×10 in the range of 7.6 keV to 9.

View Article and Find Full Text PDF

An off-axis total external reflection zone plate is applied to wavelength-dispersive X-ray spectrometry in the range from 7.8 keV to 9.0 keV.

View Article and Find Full Text PDF

Here the major upgrades of the femtoslicing facility at BESSY II (Khan et al., 2006) are reviewed, giving a tutorial on how elliptical-polarized ultrashort soft X-ray pulses from electron storage rings are generated at high repetition rates. Employing a 6 kHz femtosecond-laser system consisting of two amplifiers that are seeded by one Ti:Sa oscillator, the total average flux of photons of 100 fs duration (FWHM) has been increased by a factor of 120 to up to 10(6) photons s(-1) (0.

View Article and Find Full Text PDF

A new wavelength - dispersive X-ray spectrometer for scanning electron microscopy (SEM) has been developed. This spectrometer can cover an energy range from 50 eV to 1120 eV by using an array made of seventeen reflection zone plates. Soft X-ray emission spectra of simple elements of Li, Be, B, C, N, Ti, V, O, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ga were measured.

View Article and Find Full Text PDF

We report on a newly built laser-based tabletop setup which enables generation of femtosecond light pulses in the XUV range employing the process of high-order harmonic generation (HHG) in a gas medium. The spatial, spectral, and temporal characteristics of the XUV beam are presented. Monochromatization of XUV light with minimum temporal pulse distortion is the central issue of this work.

View Article and Find Full Text PDF

In the present work, different varied line space (VLS) and reflection zone plate (RZP) gratings are analyzed for their suitability in low-signal femtosecond soft X-ray spectroscopy. The need for high efficiency suggests a straightened focal line whose sharpness and residual curvature will determine the quality. One- and two-dimensional VLS structures feature an attractive trade-off between a sufficient optical performance and a strongly relaxed fabrication, due to moderate line densities which are easily accessible by e-beam lithography.

View Article and Find Full Text PDF

X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex.

View Article and Find Full Text PDF

L-edge spectroscopy of 3d transition metals provides important electronic structure information and has been used in many fields. However, the use of this method for studying dilute aqueous systems, such as metalloenzymes, has not been prevalent because of severe radiation damage and the lack of suitable detection systems. Here we present spectra from a dilute Mn aqueous solution using a high-transmission zone-plate spectrometer at the Linac Coherent Light Source (LCLS).

View Article and Find Full Text PDF

A novel approach for monochromatizing and focussing the Vacuum-Ultraviolet and soft x-ray radiation from high-order harmonic generation of a femtosecond optical laser with only one optical element is presented. We demonstrate that off-axis reflection zone plates applied as focussing monochromators allow for efficiently optimizing the trade-off between energy resolution and temporal dispersion of the femtosecond pulses. In the current experimental realization, we show how the temporal dispersion can be varied between 2 fs and 16 fs with a correlating variation of the energy resolution E/ΔE between 20 and 90 for an off-axis reflection zone plate optimized for harmonic 13 at 20.

View Article and Find Full Text PDF