Publications by authors named "Alexei D Kiselev"

We study pairwise interactions between localized topological structures in chiral magnetic and cholesteric liquid crystal (CLC) systems confined in the planar geometry. Our calculations for magnetics are based on the lattice model that takes into account the bulk and surface anisotropies along with the exchange and the Dzyaloshinskii-Moriya interactions. In CLC cells, these anisotropies describe the energy of interaction with an external magnetic or electric field and the anchoring energy assuming that the magnetic or electric anisotropy is negative and the boundary conditions are homeotropic.

View Article and Find Full Text PDF

We employ an exact solution of the thermal bath Lindblad master equation with the Liouvillian superoperator that takes into account both dynamic and environment-induced intermode couplings to study the speed of evolution and quantum speed limit (QSL) times of a open multi-mode bosonic system. The time-dependent QSL times are defined from quantum speed limits, giving upper bounds on the rate of change of two different measures of distinguishability: the fidelity of evolution and the Hilbert-Schmidt distance. For Gaussian states, we derive explicit expressions for the evolution speed and the QSL times.

View Article and Find Full Text PDF

We theoretically study orientational structures in chiral magnetics and cholesteric liquid crystal (CLC) nanosystems confined in the slab geometry. Our analysis is based on the model that, in addition to the exchange and the Dzyaloshinskii-Moriya interactions, takes into account the bulk and surface anisotropies. In CLC films, these anisotropies describe the energy of interaction with external magnetic/electric field and the anchoring energy assuming that magnetic/electric anisotropy is negative and the boundary conditions are homeotropic.

View Article and Find Full Text PDF

In this paper, we consider the thermal bath Lindblad master equation to describe the quantum nonunitary dynamics of quantum states in a multi-mode bosonic system. For the two-mode bosonic system interacting with an environment, we analyse how both the coupling between the modes and the coupling with the environment characterised by the frequency and the relaxation rate vectors affect dynamics of the entanglement. We discuss how the revivals of entanglement can be induced by the dynamic coupling between the different modes.

View Article and Find Full Text PDF

We disclose the method to obtain polarization insensitive phase-only modulation that preserves both the state and the degree of polarization of light modulated using a medium with controlled birefringence. We find that, in the double-pass configuration involving reflection from the Faraday rotator mirror, such a medium acts as the phase-only modulator. The experimental data measured in the Michelson-interferometer-based setup for deformed-helix ferroelectric liquid crystal cells are found to be in good agreement with the theoretical results.

View Article and Find Full Text PDF

We apply the minimum-energy paths (MEPs) approach to study the helix unwinding transition in chiral nematic liquid crystals. A mechanism of the transition is determined by a MEP passing through a first order saddle point on the free energy surface. The energy difference between the saddle point and the initial state gives the energy barrier of the transition.

View Article and Find Full Text PDF

We study the electro-optic properties of subwavelength-pitch deformed-helix ferroelectric liquid crystals (DHFLC) illuminated with unpolarized light. In the experimental setup based on the Mach-Zehnder interferometer, it was observed that the reference and the sample beams being both unpolarized produce the interference pattern which is insensitive to rotation of in-plane optical axes of the DHFLC cell. We find that the field-induced shift of the interference fringes can be described in terms of the electrically dependent Pancharatnam relative phase determined by the averaged phase shift, whereas the visibility of the fringes is solely dictated by the phase retardation.

View Article and Find Full Text PDF

We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data.

View Article and Find Full Text PDF

In order to explore electric-field-induced transformations of polarization singularities in the polarization-resolved angular (conoscopic) patterns emerging after deformed-helix ferroelectric liquid crystal (DHFLC) cells with subwavelength helix pitch, we combine the transfer matrix formalism with the results for the effective dielectric tensor of biaxial FLCs evaluated using an improved technique of averaging over distorted helical structures. Within the framework of the transfer matrix method, we deduce a number of symmetry relations and show that the symmetry axis of L lines (curves of linear polarization) is directed along the major in-plane optical axis which rotates under the action of the electric field. When the angle between this axis and the polarization plane of incident linearly polarized light is above its critical value, the C points (points of circular polarization) appear in the form of symmetrically arranged chains of densely packed star-monstar pairs.

View Article and Find Full Text PDF

We disclose the vertically aligned deformed helix ferroelectric liquid crystal whose Kerr constant (Kkerr≈130  nm/V2 at λ=543  nm) is around one order of magnitude higher than any other value previously reported for liquid crystalline structures. Under certain conditions, the phase modulation with ellipticity less than 0.05 over the range of continuous and hysteresis-free electric adjustment of the phase shift from zero to 2π has been obtained at subkilohertz frequency.

View Article and Find Full Text PDF

We experimentally study how the cholesteric pitch P depends on the equilibrium pitch P0 in planar liquid crystal (LC) cells with both strong and semistrong anchoring conditions. The cholesteric phase was induced by dissolution in the nematic LC of the right-handed chiral dopant 7-dehydrocholesterol (7-DHC, provitamin D3) which transforms to left-handed tachysterol under the action of uv irradiation at the wavelength of 254 nm. By using the model of photoreaction kinetics we obtain the dependencies of isomer concentrations and, therefore, of the equilibrium pitch on the uv irradiation dose.

View Article and Find Full Text PDF

We study both theoretically and experimentally the electro-optical properties of vertically aligned deformed helix ferroelectric liquid crystals (VADHFLC) with subwavelength pitch that are governed by the electrically induced optical biaxiality of the smectic helical structure. The key theoretical result is that the principal refractive indices of homogenized VADHFLC cells exhibit the quadratic nonlinearity and such behavior might be interpreted as an orientational Kerr effect caused by the electric-field-induced orientational distortions of the FLC helix. In our experiments, it has been observed that, for sufficiently weak electric fields, the magnitude of biaxiality is proportional to the square of electric field in good agreement with our theoretical results for the effective dielectric tensor of VADHFLCs.

View Article and Find Full Text PDF

We theoretically study the kinetics of photoinduced reordering triggered by linearly polarized (LP) reorienting light in thin azo-dye films that were initially illuminated with LP ultraviolet pumping beam. The process of reordering is treated as a rotational diffusion of molecules in the light intensity-dependent mean-field potential. The two-dimensional diffusion model which is based on the free energy rotational Fokker-Planck equation and describes the regime of in-plane reorientation is generalized to analyze the dynamics of the azo-dye order parameter tensor at varying polarization azimuth of the reorienting light.

View Article and Find Full Text PDF

Electro-optical properties of deformed helix ferroelectric liquid crystal (DHFLC) cells are studied by using a general theoretical approach to polarization gratings in which the transmission and reflection matrices of diffraction orders are explicitly related to the evolution operator of equations for the Floquet harmonics. In the short-pitch approximation, a DHFLC cell is shown to be optically equivalent to a uniformly anisotropic biaxial layer where one of the optical axes is normal to the bounding surfaces. For in-plane anisotropy, orientation of the optical axes and birefringence are both determined by the voltage applied across the cell and represent the parameters that govern the transmittance of normally incident light passing through crossed polarizers.

View Article and Find Full Text PDF

Stochastic dynamics in the energy representation is used as a method to represent nonequilibrium Brownian-like systems. It is shown that the equation of motion for the energy of such systems can be taken in the form of the Langevin equation with multiplicative noise. Properties of the steady states are examined by solving the Fokker-Planck equation for the energy distribution functions.

View Article and Find Full Text PDF

We study azimuthal gliding of the easy axis that occurs in nematic liquid crystals brought in contact with the photoaligned substrate (initially irradiated azo-dye film) under the action of reorienting UV light combined with in-plane electric field. For irradiation with the linearly polarized light, dynamics of easy axis reorientation is found to be faster as compared to the case of nonpolarized light. Another effect is that it slows down with the initial irradiation dose used to prepare the azo-dye film.

View Article and Find Full Text PDF

We theoretically study the kinetics of photoinduced ordering in azo-dye photoaligning layers and present the results of modeling performed using two different phenomenological approaches. A phenomenological two-state model is deduced from the master equation for the one-particle distribution functions of an ensemble of two-level molecular systems by specifying the angular redistribution probabilities and by expressing the order parameter correlation functions in terms of the order parameter tensor. Using an alternative approach that describes light-induced reorientation of azo-dye molecules in terms of a rotational Brownian motion, we formulate the two-dimensional diffusion model as the free energy Fokker-Planck equation simplified for the limiting regime of purely in-plane reorientation.

View Article and Find Full Text PDF

We have studied a sequence of anchoring transitions observed in nematic liquid crystals (NLCs) sandwiched between hydrophobic polyimide substrates treated with a plasma beam. There is a pronounced continuous transition from a homeotropic to a slightly tilted (nearly planar) alignment with the easy axis parallel to the incidence plane of the plasma beam (the zenithal transition) which takes place as the exposure dose increases. In NLCs with positive dielectric anisotropy, a further increase in the exposure dose results in in-plane reorientation of the easy axis by 90 degrees (the azimuthal transition).

View Article and Find Full Text PDF

We study both theoretically and experimentally switching dynamics in asymmetric surface stabilized ferroelectric liquid crystal cells where the bounding surfaces are treated differently to produce asymmetry in their anchoring properties. Our electro-optic measurements of the switching voltage thresholds, V+ and -V{-}, that are determined by the peaks of the reversal polarization current reveal the frequency dependent shift of the hysteresis loop, V{+}-V{-}. We examine the predictions of the uniform dynamic model with the anchoring energy taken into account.

View Article and Find Full Text PDF

We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by theoretically analysing the polarization state as a function of the incidence angles. For a uniformly aligned NLC cell, the 4 × 4 matrix formalism and the orthogonality relations are used to derive the exact expressions for the transmission and reflection matrices. The polarization resolved angular patterns in the two-dimensional projection plane are characterized in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization).

View Article and Find Full Text PDF

We study both theoretically and experimentally the anchoring properties of photoaligning azo-dye films in contact with a nematic liquid crystal depending on the photoinduced ordering of azo-dye molecules. In the mean field approximation, we found that the bare surface anchoring energy depends linearly on the azo-dye order parameter and the azimuthal anchoring strength decays to zero in the limit of vanishing photoinduced ordering. From the absorption dichroism spectra measured in azo-dye films that are prepared from an azo-dye derivative with polymerizable terminal groups we obtain the dependence of the dichroic ratio on the irradiation dose.

View Article and Find Full Text PDF

The structural peculiarities and electro-optic performance of liquid crystal (LC)-colloidal nanoparticle (NP)-polymer (P) composites formed by photoinduced phase separation are considered. We classify these materials under two groups according to two limiting cases of polymer morphology. The first group corresponding to small polymer concentration comprises LCs filled with NPs that are stabilized with a polymer network.

View Article and Find Full Text PDF