Publications by authors named "Alexei A Stuchebrukhov"

We have explored a strategy to identify potential proton transfer channels using computational analysis of a protein structure based on Voronoi partitioning and applied it for the analysis of proton transfer pathways in redox-driven proton-pumping respiratory complex I. The analysis results in a network of connected voids/channels, which represent the dual structure of the protein; we then hydrated the identified channels using our water placement program Dowser++. Many theoretical water molecules found in the channels perfectly match the observed experimental water molecules in the structure; some other predicted water molecules have not been resolved in the experiments.

View Article and Find Full Text PDF

Proton circuits within biological membranes, the foundation of natural bioenergetic systems, are significantly influenced by the lipid compositions of different biological membranes. In this study, we investigate the influence of mixed lipid membrane composition on the proton transfer (PT) properties on the surface of the membrane. We track the excited-state PT (ESPT) process from a tethered probe to the membrane with timescales and length scales of PT relevant to bioenergetic systems.

View Article and Find Full Text PDF

In all resolved structures of complex I, there exists a tunnel-like Q-chamber for ubiquinone binding and reduction. The entrance to the Q-chamber in ND1 subunit forms a narrow bottleneck, which is rather tight and requires thermal conformational changes for ubiquinone to get in and out of the binding chamber. The substitution of alanine with threonine at the bottleneck (AlaThr MUT), associated with 3460/ND1 mtDNA mutation in human complex I, is implicated in Leber's Hereditary Optic Neuropathy (LHON).

View Article and Find Full Text PDF

Autoxidation of tartaric acid in air-saturated aqueous solutions in the presence of Fe(II) at low pH, 2.5, shows autocatalytic behavior with distinct initiation, propagation, and termination phases. With increasing pH, the initiation phase speeds up, while the propagation phase shortens and reduces to none.

View Article and Find Full Text PDF
Article Synopsis
  • Complex I is an important enzyme involved in the process of proton pumping within bacterial and mitochondrial electron transport chains.
  • Through the use of quantum chemistry and electrostatic calculations, researchers discovered that the pKa (acid dissociation constant) of the reduced quinone QH-/QH2 in Complex I's cavity is very high, indicating strong proton retention.
  • The study proposes a model that explains how the energy from the protonation reaction can efficiently trigger the movement of four protons across the membrane, highlighting a mechanism for energy transfer during the pumping process.
View Article and Find Full Text PDF

Proton migration on biological membranes plays a major role in cellular respiration and photosynthesis, but it is not yet fully understood. Here we show that proton dissociation kinetics and related geminate recombination can be used as a probe of such proton migration mechanisms. We develop a simple model for the process and apply it to analyze the results obtained using a photo-induced proton release probe (chemically modified photoacid) tethered to phosphatidylcholine membranes.

View Article and Find Full Text PDF

We apply linear response theory to calculate mechanical allosteric couplings in respiratory complex I between the iron sulfur cluster N2, located in the catalytic cavity, and the membrane part of the enzyme, separated from it by more than 50 Å. According to our hypothesis, the redox reaction of ubiquinone in the catalytic cavity of the enzyme generates an unbalanced charge that via repulsion of the charged redox center N2 produces local mechanical stress that transmits into the membrane part of the enzyme where it induces proton pumping. Using coarse-grained simulations of the enzyme, we calculated mechanistic allosteric couplings that reveal the pathways of the mechanical transmission of the stress along the enzyme.

View Article and Find Full Text PDF

At the joint between the membrane and hydrophilic arms of the enzyme, the structure of the respiratory complex I reveals a tunnel-like Q-chamber for ubiquinone binding and reduction. The narrow entrance of the quinone chamber located in ND1 subunit forms a bottleneck (eye of a needle) which in all resolved structures was shown to be too small for a bulky quinone to pass through, and it was suggested that a conformational change is required to open the channel. The closed bottleneck appears to be a well-established feature of all structures reported so-far, both for the so-called open and closed states of the enzyme, with no indication of a stable open state of the bottleneck.

View Article and Find Full Text PDF

The structure of the entire respiratory complex I is now known at reasonably high resolution for many species - bacteria, yeast, and several mammals, including human. The structure reveals an almost 30 angstrom tunnel-like chamber for ubiquinone binding in the core part of the enzyme, at the joint between the membrane and hydrophilic arms of the enzyme. Here we characterize the geometric bottleneck forming the entrance of the quinone reaction chamber.

View Article and Find Full Text PDF

The kinetics of the autoxidation reaction of tartaric acid in an air-saturated solution in the presence of Fe(II) show autocatalytic behavior with distinct initiation, propagation, and termination phases. The initiation phase, which involves activation of dissolved oxygen, decreases with increasing pH, over the test range of pH of 2.5-4.

View Article and Find Full Text PDF

Complex I (CI) is the first enzyme of the mitochondrial respiratory chain and couples the electron transfer with proton pumping. Mutations in genes encoding CI subunits can frequently cause inborn metabolic errors. We applied proteome and metabolome profiling of patient-derived cells harboring pathogenic mutations in two distinct CI genes to elucidate underlying pathomechanisms on the molecular level.

View Article and Find Full Text PDF

Complexes I to IV, with the exception of Complex II, are redox-driven proton pumps that convert redox energy of oxygen reduction to proton gradient across the mitochondrial or bacterial membrane; in turn, the created electrochemical gradient drives the adenosine triphosphate synthesis in the cells by utilizing complex V of the chain. Here we address a general question of the efficiency of such enzymes, considering them as molecular machines that couple endergonic and exergonic reactions and converting one form of free energy into another. One well-known example of the efficiency is given by Carnot's theorem for heat engines.

View Article and Find Full Text PDF

Respiratory complex I catalyzes two-electron/two-proton reduction of a ubiquinone (Q) substrate bound at its Q-binding pocket; upon reduction, ubiquinole carries electrons further down the electron transport chain. The mechanism of this two-electron transfer reaction is poorly understood. Here we consider a hypothetical scheme in which two electrons transfer together with two protons in a concerted fashion.

View Article and Find Full Text PDF

In aerobic cells, the proton gradient that drives ATP synthesis is created by three different proton pumps-membrane enzymes of the respiratory electron transport chain known as complex I, III, and IV. Despite the striking dissimilarity of structures and apparent differences in molecular mechanisms of proton pumping, all three enzymes have much in common and employ the same universal physical principles of converting redox energy to proton pumping. In this study, we describe a simple mathematical model that illustrates the general principles of redox-driven proton pumps and discuss their implementation in complex I, III, and IV of the respiratory chain.

View Article and Find Full Text PDF

We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS.

View Article and Find Full Text PDF

A new binding site and potential novel inhibitors of the respiratory complex III are described. The site is located at the opposite side of the enzyme with respect to ubiquinol binding site (Qo site), and distinctly different from both Qo and Qi sites (hence designated as Non-Q binding site, NQ). NQ site binding pocket extends up close to Phe90 residue, an internal switch (LH switch) that regulates electron transfer between heme bL and heme bH of the low potential redox chain.

View Article and Find Full Text PDF

In different X-ray crystal structures of bc1 complex, some of the key residues of electron tunneling pathways are observed in different conformations; here we examine their relative importance in modulating electron transfer and propose their possible gating function in the Q-cycle. The study includes inter-monomeric electron transfer; here we provide atomistic details of the reaction, and discuss the possible roles of inter-monomeric electronic communication in bc(1) complex. Binding of natural ligands or inhibitors leads to local conformational changes which propagate through protein and control the conformation of key residues involved in the electron tunneling pathways.

View Article and Find Full Text PDF

Monte Carlo (MC) simulations of conformational changes and protonation of Glu-242, a key residue that shuttles protons in cytochrome c oxidase (CcO), are reported. Previous studies suggest that this residue may play a role of the valve of the enzyme proton pump. Here we examine how sensitive the results of simulations are to the computational method used.

View Article and Find Full Text PDF

The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways.

View Article and Find Full Text PDF

The transition flux formula for the coupling matrix element of long-distance electron transfer reactions is discussed. Here we present a new derivation which is based on the Golden Rule approach. The electronic Franck-Condon factor that appears in the multielectronic formulation of the coupling element is discussed using the concept of tunneling time.

View Article and Find Full Text PDF

Earlier, using phenomenological approach, we showed that in some cases polarizable models of condensed phase systems can be reduced to nonpolarizable equivalent models with scaled charges. Examples of such systems include ionic liquids, TIPnP-type models of water, protein force fields, and others, where interactions and dynamics of inherently polarizable species can be accurately described by nonpolarizable models. To describe electrostatic interactions, the effective charges of simple ionic liquids are obtained by scaling the actual charges of ions by a factor of 1/√(ε(el)), which is due to electronic polarization screening effect; the scaling factor of neutral species is more complicated.

View Article and Find Full Text PDF

Recent experiments suggest that protons can travel along biological membranes up to tens of micrometers, but the mechanism of transport is unknown. To explain such a long-range proton translocation we describe a model that takes into account the coupled bulk diffusion that accompanies the migration of protons on the surface. We show that protons diffusing at or near the surface before equilibrating with the bulk desorb and re-adsorb at the surface thousands of times, giving rise to a power-law desorption kinetics.

View Article and Find Full Text PDF

Although a great number of computational models of water are available today, the majority of current biological simulations are done with simple models, such as TIP3P and SPC, developed almost thirty years ago and only slightly modified since then. The reason is that the non-polarizable force fields that are mostly used to describe proteins and other biological molecules are incompatible with more sophisticated modern polarizable models of water. The issue is electronic polarizability: in liquid state, in protein, and in vacuum the water molecule is polarized differently, and therefore has different properties; thus the only way to describe all these different media with the same model is to use a polarizable water model.

View Article and Find Full Text PDF

A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O→E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions.

View Article and Find Full Text PDF

A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons.

View Article and Find Full Text PDF