Publications by authors named "Alexandru-Milentie Hada"

Background: C-reactive protein (CRP) represents an early clinical biomarker that indicates the presence of inflammatory or infectious conditions in the human body. Today's procedures approved by the Food and Drug Administration (FDA) imply expensive equipment and highly trained personnel to perform the test. Therefore, a new diagnostic method with high detection efficiency and less cost is urgently needed for delivering rapid and timely results in point-of-care (POC) service.

View Article and Find Full Text PDF

The majority of present-day white-light emitting devices (WLEDs) are built upon the use of rare-earth elements, which have a short supply, are expensive and can become extremely toxic. Thus, in this work, we synthesized an eco-friendly, efficient and cheap white-light emitting material (WLEM) based on solid-state histidine-stabilized gold nanoclusters (His-AuNCs), obtained through the lyophilization of microwave-synthesized photoluminescent His-AuNCs. Their morphological and structural characterization was followed by thorough evaluation of their intrinsic solid-state photoluminescence properties steady-state and time-resolved fluorescence spectroscopy and microscopy, at multiple excitation wavelengths.

View Article and Find Full Text PDF

Early and simple detection of aberrant cooper metabolism in diseases with neurological-manifestations and several other conditions, including cancer, becomes an urgent necessity. Instrumental methods used today are limited to high-cost equipment and reagents and demand highly qualified personnel. In this work, we report easy-to-use and cost-effective nano-sized sensors for the selective and quantitative detection of copper ion based on fluorescence quenching.

View Article and Find Full Text PDF

Human C-reactive protein (CRP), an early clinical indicator of infectious or inflammatory conditions has been recently identified as a key biomarker associated with the development of COVID-19. The rapid and accurate determination of CRP level in blood serum is an urgent need to predict timely the risk of disease worsening. The emergence of nanotechnological tools has provided an attractive perspective in designing portable bioanalytical assays with fast response time, high sensitivity and specificity, and multiplexing capability for accurate, on-site disease diagnosis and monitoring.

View Article and Find Full Text PDF

Advanced nanoscale antimicrobials, originated from the combination of noble metal nanoparticles (NPs) with conventional antimicrobial drugs, are considered the next generation of antimicrobial agents. Therefore, there is an increasing demand for rapid, eco-friendly, and relatively inexpensive synthetic approaches for the preparation of nontoxic metallic nanostructures endowed with unique physicochemical properties. Recently, we have proposed a straightforward synthetic strategy that exploits the properties of polymeric β-cyclodextrin (PolyCD) to act as both the reducing and stabilizing agent to produce monodispersed and stable gold-based NPs either as monometallic (nanoG) structures or core-shell bimetallic (nanoGS) architectures with an external silver layer.

View Article and Find Full Text PDF

Herein is presented a novel and efficient portable paper-based sensing platform using paper-incorporated histidine stabilized gold nanoclusters (His-AuNCs), for the sensitive and selective detection of Fe ions from low-volume real water samples based on photoluminescence (PL) quenching. Highly photoluminescent colloidal His-AuNCs are obtained via a novel microwave-assisted method. The His-AuNCs-based sensor reveals a limit of detection (LOD) as low as 0.

View Article and Find Full Text PDF

An innovative research has been conducted focused on demonstrating the ability of novel dual-emissive glutathione-stabilized gold nanoclusters (GSH-AuNCs) to perform bright near-infrared (NIR)-emitting contrast agents inside tissue-mimicking agarose-phantoms via two complementary confocal fluorescence imaging techniques. First, using a new and fast microwave-assisted approach, we synthesized photostable dual-emitting GSH-AuNCs with an average size of 3.2 ± 0.

View Article and Find Full Text PDF

We describe a mild, ecofriendly, and straightforward two-step strategy for making core-shell Au@Ag bimetallic nanoparticles (BMNPs) for antibacterial nanomedicine and SERS imaging. The synthesis exploits the unique properties of the cationic polymeric cyclodextrin (PolyCD) as both reducing and stabilizing agent to obtain, monodispersed and stable Au@Ag BMNPs. PolyCD-driven protocol includes the synthesis of PolyCD-coated Au monometallic nanoparticles (MNPs) as a seed material for the subsequent growing of a silver shell.

View Article and Find Full Text PDF

Beside attractive electrical, thermal and mechanical properties, graphene oxide (GO) exhibits visible and near-infrared (NIR) photoluminescence (PL) and well-defined fingerprint Raman bands which are remarkable optical signatures to implement GO as new contrast agent for the visualization of cells or tissue, including cancer tumors. However, the biomedical use of GO as optical contrast agent is to some extent hindered by the intrinsic low emission efficiency especially at neutral pH. Herein, we successfully modulate the PL of GO nanoflakes in acidic and neutral medium by passivating them with polyvinylpyrrolidone (PVP), an amphiphilic and biocompatible polymer, thus improving the PL at pH relevant for biomedical applications.

View Article and Find Full Text PDF

To understand the photochemical behaviour of the polydopamine polymer in detail, one would also need to know the behaviour of its building blocks. The electronic absorption, as well as the fluorescence emission and excitation spectra of the dopamine were experimentally and theoretically investigated considering time-resolved fluorescence spectroscopy and first-principles quantum theory methods. The shape of the experimental absorption spectra obtained for different dopamine species with standard, zwitterionic, protonated, and deprotonated geometries was interpreted by considering the advanced equation-of-motion coupled-cluster theory of DLPNO-STEOM.

View Article and Find Full Text PDF

Gold nanoclusters (AuNCs) have attracted extensive attention as light-emissive materials with unique advantages such as high photostability, large Stoke shifts and low toxicity. However, a better understanding of their solid-state photoluminescence properties is still needed. Herein, we investigated for the first time the intrinsic photoluminescence properties of lyophilized bovine serum albumin stabilized AuNCs (BSA-AuNCs) fluorescence lifetime imaging microscopy (FLIM) studies performed under both one and two photon excitations (OPE and TPE) on individual microflakes, combined with fluorescence spectroscopic investigations.

View Article and Find Full Text PDF

Recently, gold nanoclusters (AuNCs) have received considerable scientific interest due to their ability to generate intrinsic photoluminescence (PL), making them suitable for a wide range of applications, such as sensing, biolabeling and bioimaging. Fluorescence lifetime imaging microscopy (FLIM) is an extremely promising technique when it comes to tissue imaging, especially once combined with near-infrared two-photon excitation (TPE) due to deep tissue penetration and improved spatial resolution. In this paper, we carried out an innovative study on the ability of bovine serum albumin stabilized gold nanoclusters (BSA-AuNCs) to perform as reliable label-free contrast agents for the visualization of tissue-like agarose phantoms TPE-FLIM.

View Article and Find Full Text PDF

Photoluminescent gold nanoclusters have attracted an extensive research interest in bioimaging and therapeutics due to several distinctive advantages such as high fluorescent photostability, good dispersibility, low toxicity and large Stokes shift. However, a better understanding of the correlation between optical properties in various environments and their uptake by specific cancer cells is still needed. Herein, we developed bovine serum albumin stabilized gold nanoclusters (BSA-AuNCs) with an intrinsic tunable photoluminescence emission in the first biological window.

View Article and Find Full Text PDF

This paper presents the fabrication and characterization of new gold-silver core-shell nanoparticles labeled with para-mercaptobenzoic acid (4MBA) molecules and demonstrates their use as surface-enhanced Raman spectroscopy (SERS)-nanotags with ultra-bright traceability inside cells and ability to convey spectrally-coded information about the intracellular pH by means of SERS. Unlike previous reported studies, our fabrication procedure includes in the first step the synthesis of chitosan-coated gold nanoparticles as a seed material with subsequent growing of a silver shell. The bimetallic core-shell structure is revealed by transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, energy-dispersive x-ray elemental mapping and the presence of two interacting localized surface plasmon resonance modes in UV-vis extinction spectrum.

View Article and Find Full Text PDF