Publications by authors named "Alexandrowicz G"

The rotational orientation dependence of H scattering into different diffraction channels on a Cu(511) surface is studied using a magnetic manipulation interferometry technique. For some channels, markedly different signals are measured, whereas for others, they are more similar. The data are analyzed to obtain scattering matrices, which quantify how the amplitude and phase of the wave function change during the gas-surface collision and are extremely sensitive to the underlying potential.

View Article and Find Full Text PDF

The emerging technique of neutral beam microscopy offers a non-perturbative way of imaging surfaces of various materials which cannot be studied using conventional microscopes. Current neutral beam microscopes use either diffractive focusing or pin-hole scanning to achieve spatial resolution, and are characterised by a strong dependence of the imaging time on the required resolution. In this work we introduce an alternative method for achieving spatial resolution with neutral atom beams which is based on manipulating the magnetic moments of the beam particles in a gradient field, and is characterised by a much weaker dependence of the imaging time on the image resolution.

View Article and Find Full Text PDF

A magnetically manipulated molecular beam technique is used to change the rotational orientation of H molecules which collide with a stepped Cu(511) surface and explore how the polarisation dependence of molecules scattering into the specular channel changes as a function of surface temperature. At all temperatures, H molecules that are rotating like cartwheels are more likely to be scattered into the specular channel than those that are rotating like helicopters. Furthermore, the scattered molecules are more likely to be rotating like cartwheels, regardless of their state before the collision.

View Article and Find Full Text PDF

Helium (He) spin-echo is a powerful experimental technique used to probe ultra-fast atomic scale surface dynamics. The analysis of these measurements is typically performed assuming there is only a single spin-echo condition, expected to produce a constant signal for pure elastic scattering, a monotonically decaying signal for quasi-elastic scattering and oscillations from inelastic scattering events. In the present work, we show that there are in fact four spin-echoes which must be correctly accounted for, and that even in the case of elastic scattering these additional echoes lead to oscillations which could mistakenly be interpreted as being due to inelastic scattering.

View Article and Find Full Text PDF

A new method to measure surface phonons with a molecular beam is presented. The method extends the principles of He spin-echo spectroscopy, to the more complex case of a molecular beam exchanging energy with the surface. Measurements are presented for inelastic scattering of D from a Cu(111) surface.

View Article and Find Full Text PDF

Rotational motion lies at the heart of intermolecular, molecule-surface chemistry and cold molecule science, motivating the development of methods to excite and de-excite rotations. Existing schemes involve perturbing the molecules with photons or electrons which supply or remove energy comparable to the rotational level spacing. Here, we study the possibility of de-exciting the molecular rotation of a D molecule, from J = 2 to the non-rotating J = 0 state, without using an energy-matched perturbation.

View Article and Find Full Text PDF

Helium Atom Scattering (HAS) and Helium Spin-Echo scattering (HeSE), together helium scattering, are well established, but non-commercial surface science techniques. They are characterised by the beam inertness and very low beam energy (<0.1 eV) which allows essentially all materials and adsorbates, including fragile and/or insulating materials and light adsorbates such as hydrogen to be investigated on the atomic scale.

View Article and Find Full Text PDF

In this paper we demonstrate that a molecular beam of hydrogen molecules can be magnetically manipulated to produce multiple coherences in the molecular interference pattern. Unlike spin 1/2 magnetic beam experiments, i.e.

View Article and Find Full Text PDF

The coherent evolution of a molecular quantum state during a molecule-surface collision is a detailed descriptor of the interaction potential which was so far inaccessible to measurements. Here we use a magnetically controlled molecular beam technique to study the collision of rotationally oriented ground state hydrogen molecules with a lithium fluoride surface. The coherent control nature of the technique allows us to measure the changes in the complex amplitudes of the rotational projection quantum states, and express them using a scattering matrix formalism.

View Article and Find Full Text PDF

Magnetic focusing of a molecular beam formed from a rotationally cooled supersonic jet of HO seeded in argon is shown to yield water vapor highly enriched in the -HO nuclear spin isomer (NSI). Rotationally resolved resonance-enhanced multiphoton ionization time-of-flight mass spectrometry demonstrates that this methodology enables the preparation of a beam of water molecules enriched to >98% in the -HO NSI, that is, having an ortho-to-para ratio in excess of 50:1. The flux and quantum-state purity achieved through the methodology described herein could enable heterogeneous chemistry applications including the preparation of nuclear spin-polarized water adlayers, making nuclear magnetic resonance investigations amenable to surface science studies, as well as laboratory astrophysics investigations of NSI interconversion mechanisms and rates in ice and at its surface.

View Article and Find Full Text PDF

Separating molecular spin isomers is a challenging task, with potential applications in various fields ranging from astrochemistry to magnetic resonance imaging. A new promising method for spin-isomer separation is magnetic focusing, a method which was shown to be capable of producing a molecular beam of ortho-water. Here, we present results from a modified magnetic focusing apparatus and show that it can be used to separate the spin isomers of acetylene and methane.

View Article and Find Full Text PDF

Heterogeneous ice nucleation is a key process in many environmental and technical fields and is of particular importance in modeling atmospheric behavior and the Earth's climate. Despite an improved understanding of how water binds at solid surfaces, no clear picture has emerged to describe how 3D ice grows from the first water layer, nor what makes a particular surface efficient at nucleating bulk ice. This study reports how water at a corrugated, hydrophilic/hydrophobic surface restructures from a complex 2D network, optimized to match the solid surface, to grow into a continuous ice film.

View Article and Find Full Text PDF

Highly corrugated, stepped surfaces present regular 1D arrays of binding sites, creating a complex, heterogeneous environment to water. Rather than decorating the hydrophilic step sites to form 1D chains, water on stepped Cu(511) forms an extended 2D network that binds strongly to the steps but bridges across the intervening hydrophobic Cu(100) terraces. The hydrogen-bonded network contains pentamer, hexamer, and octomer water rings that leave a third of the stable Cu step sites unoccupied in order to bind water H down close to the step dipole and complete three hydrogen bonds per molecule.

View Article and Find Full Text PDF

The outcome of molecule-surface collisions can be modified by pre-aligning the molecule; however, experiments accomplishing this are rare because of the difficulty of preparing molecules in aligned quantum states. Here we present a general solution to this problem based on magnetic manipulation of the rotational magnetic moment of the incident molecule. We apply the technique to the scattering of H from flat and stepped copper surfaces.

View Article and Find Full Text PDF
Article Synopsis
  • The interconversion process between the nuclear spin isomers (NSI) of water (HO) is not fully understood, but recent findings suggest that the environment, particularly when HO is trapped in an argon matrix, significantly affects the rates of this process.
  • The faster interconversion rates in confined environments compared to gas phase conditions hint at new ways for o-HO (ortho-water) to convert to p-HO (para-water) in complex compounds.
  • Understanding these mechanisms can enhance methods for separating and storing NSIs, which is useful for applications like magnetic resonance spectroscopy and studying conditions in space.
View Article and Find Full Text PDF

Mass transport at a surface is a key factor in heterogeneous catalysis. The rate is determined by excitation across a translational barrier and depends on the energy landscape and the coupling to the thermal bath of the surface. Here we use helium spin-echo spectroscopy to track the microscopic motion of benzene adsorbed on Cu(001) at low coverage (θ ∼ 0.

View Article and Find Full Text PDF

We followed the collective atomic-scale motion of Na atoms on a vicinal Cu(115) surface within a time scale of pico- to nanoseconds using helium spin echo spectroscopy. The well-defined stepped structure of Cu(115) allows us to study the effect that atomic steps have on the adsorption properties, the rate for motion parallel and perpendicular to the step edge, and the interaction between the Na atoms. With the support of a molecular dynamics simulation we show that the Na atoms perform strongly anisotropic 1D hopping motion parallel to the step edges.

View Article and Find Full Text PDF

Diffusion studies of adsorbates moving on a surface are often analyzed using 2D Langevin simulations. These simulations are computationally cheap and offer valuable insight into the dynamics, however, they simplify the complex interactions between the substrate and adsorbate atoms, neglecting correlations in the motion of the two species. The effect of this simplification on the accuracy of observables extracted using Langevin simulations was previously unquantified.

View Article and Find Full Text PDF

The coverage dependent dynamics of CO on a Cu(111) surface are studied on an atomic scale using helium spin-echo spectroscopy. CO molecules occupy top sites preferentially, but also visit intermediate bridge sites in their motion along the reaction coordinate. We observe an increase in hopping rate as the CO coverage grows; however, the motion remains uncorrelated up to at least 0.

View Article and Find Full Text PDF

We present helium scattering measurements of a water ad-layer grown on a O(2 × 1)/Ru(0001) surface. The adsorbed water layer results in a well ordered helium diffraction pattern with systematic extinctions of diffraction spots due to glide line symmetries. The data reflects a well-defined surface structure that maintains proton order even at surprisingly high temperatures of 140 K.

View Article and Find Full Text PDF

The helium spin echo spectrometer is a powerful apparatus for measuring surface dynamics and can be used in several different modes of operation. In this paper we present the first two-dimensional measurements of the wavelength intensity matrix, offering a new approach for studying surface phonons. The approach that we present is completely independent of the incident beam energy distribution and hence can be used to study inelastic scattering with ultra-high resolution.

View Article and Find Full Text PDF

Like dihydrogen, water exists as two spin isomers, ortho and para, with the nuclear magnetic moments of the hydrogen atoms either parallel or antiparallel. The ratio of the two spin isomers and their physical properties play an important role in a wide variety of research fields, ranging from astrophysics to nuclear magnetic resonance (NMR). Unlike ortho and para H(2), however, the two water isomers remain challenging to separate, and as a consequence, very little is currently known about their different physical properties.

View Article and Find Full Text PDF

Measurements of the atomic-scale motion of H and D atoms on the Pt(111) surface, above the crossover temperature to deep tunneling, are presented. The results indicate that quantum effects are significant up to the highest temperature studied (250 K). The motion is shown to correspond to nearest neighbor hopping diffusion on a well defined fcc (111) lattice.

View Article and Find Full Text PDF

Helium-3 spin-echo measurements of resonant scattering from the Si(111)-(1 × 1)H surface, in the energy range 4-14 meV, are presented. The measurements have high energy resolution yet they reveal bound state resonance features with uniformly broad linewidths. We show that exact quantum mechanical calculations of the elastic scattering, using the existing potential for the helium/Si(111)-(1 × 1)H interaction, cannot reproduce the linewidths seen in the experiment.

View Article and Find Full Text PDF