We propose a novel hybrid approach that integrates Neural Ordinary Differential Equations (NODEs) with Bayesian optimization to address the dynamics and parameter estimation of a modified time-delay-type Susceptible-Infected-Removed (SIR) model incorporating immune memory. This approach leverages a neural network to produce continuous multi-wave infection profiles by learning from both data and the model. The time-delay component of the SIR model, expressed through a convolutional integral, results in an integro-differential equation.
View Article and Find Full Text PDFSerum electrophoresis (SPEP) is a method used to analyze the distribution of the most important proteins in the blood. The major clinical question is the presence of monoclonal fraction(s) of antibodies (M-protein/paraprotein), which is essential for the diagnosis and follow-up of hematological diseases, such as multiple myeloma. Recent studies have shown that machine learning can be used to assess protein electrophoresis by, for example, examining protein glycan patterns to follow up tumor surgery.
View Article and Find Full Text PDF