Publications by authors named "Alexandros Alexandratos"

Background: The prothoracic gland (PG), the principal steroidogenic organ of insects, has been proposed as a model for steroid hormone biosynthesis and regulation.

Results: To validate the robustness of the model, we present an analysis of accumulated transcriptomic data from PGs of two model species, Drosophila melanogaster and Bombyx mori. We identify that the common core components of the model in both species are encoded by nine genes.

View Article and Find Full Text PDF

Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the developmental timing of their immature life stages. These cells have been historically considered as carrying out a single function in insects, namely the biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing body of evidence shows that PG cells receive multiple cues during insect development so we tested the hypothesis that they carry out more than just one function in insects.

View Article and Find Full Text PDF

Background: In search of new antiparasitic agents for overcoming the limitations of current leishmaniasis chemotherapy, we have previously shown that 6-bromoindirubin-3'-oxime (6BIO) and several other 6-substituted analogues of indirubin, a naturally occurring bis-indole present in mollusks and plants, displayed reverse selectivity from the respective mammalian kinases, targeting more potently the leishmanial Cyclin-Dependent Kinase-1 (CDK1) homologue [cdc2-related protein kinase 3 (LCRK3)] over leishmanial Glycogen Synthase Kinase-3 (LGSK-3). This reversal of selectivity in Leishmania parasites compared to mammalian cells makes the design of specific indirubin-based LGSK-3 inhibitors difficult. In this context, the identification of compounds bearing specific substitutions that shift indirubin inhibition towards LGSK-3, previously found to be a potential drug target, over LCRK3 is imperative for antileishmanial targeted drug discovery.

View Article and Find Full Text PDF

Overexpression of Leishmania histone H1 (LeishH1) was previously found to cause a promastigote-to-amastigote differentiation handicap, deregulation of cell-cycle progression, and loss of parasite infectivity. The aim of this study was to identify changes in the proteome of LeishH1 overexpressing parasites associated with the avirulent phenotype observed. 2D-gel electrophoresis analysis revealed only a small protein subset of differentially expressed proteins in the LeishH1 overexpressing promastigotes.

View Article and Find Full Text PDF

Reactions of thiosemicarbazones of 2-formyl and 2-acetyl pyridine and containing an azepane ring (hexamethyleneiminyl ring) incorporated at N(4)-position, HL(1) (1) and HL(2) (2) with platinum(II) afforded the complexes, [Pt(L(1))Cl] (3) and [Pt(L(2))Cl] (4). Characterization of the compounds was accomplished by means of elemental analysis and spectroscopic techniques NMR, UV-vis and IR spectroscopy. The single-crystal X-ray structure of complex [Pt(L(2))Cl] (4) shows that the ligand monoanion coordinates in a planar conformation to the metal via the pyridyl N atom, the imine-N atom, and thiolato S-atom.

View Article and Find Full Text PDF