Publications by authors named "Alexandrina Ferreira Mendes"

The chemical modification of natural compounds is a promising strategy to improve their frequently poor bioavailability and low potency. This study aimed at synthesizing chemical derivatives of carvone, a natural monoterpene with anti-inflammatory properties, which we recently identified, and evaluating their potential anti-inflammatory activity. Fourteen chemical derivatives of carvone were synthesized, purified and their chemical structures confirmed.

View Article and Find Full Text PDF

To explore the molecular mechanisms underlying the anti-inflammatory activity of (R)-(-)-carvone, we evaluated its ability to inhibit the signaling pathways involving the mitogen-activated protein kinases (MAPKs) and the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). (R)-(-)-carvone significantly decreased c-Jun N-terminal kinase (JNK) 1phosphorylation, but not that of the other MAPKs, induced by bacterial lipopolysaccharides (LPS) in the RAW 264.7 macrophage cell line.

View Article and Find Full Text PDF

Sirtuin 1 (SIRT) is a class III, NAD-dependent histone deacetylase that also modulates the activity of numerous non-histone proteins through deacylation. SIRT1 plays critical roles in regulating and integrating cellular energy metabolism, response to stress, and circadian rhythm by modulating epigenetic and transcriptional regulation, mitochondrial homeostasis, proteostasis, telomere maintenance, inflammation, and the response to hypoxia. SIRT1 expression and activity decrease with aging, and enhancing its activity extends life span in various organisms, including mammals, and improves many age-related diseases, including cancer, metabolic, cardiovascular, neurodegenerative, respiratory, musculoskeletal, and renal diseases, but the opposite, that is, aggravation of various diseases, such as some cancers and neurodegenerative diseases, has also been reported.

View Article and Find Full Text PDF

The signaling pathways involved in age-related inflammation are increasingly recognized as targets for the development of preventive and therapeutic strategies. Our previous study elucidated the structure-activity relationship of monoterpene compounds derived from -menthane as potential anti-inflammatory drugs and identified (S)-(+)-carvone as the most potent among the compounds tested. This study aims at identifying the molecular mechanism underlying the anti-inflammatory properties of (S)-(+)-carvone.

View Article and Find Full Text PDF

Osteoarthritis (OA) and Obstructive Sleep Apnea (OSA) are two highly prevalent chronic diseases for which effective therapies are urgently needed. Recent epidemiologic studies, although scarce, suggest that the concomitant occurrence of OA and OSA is associated with more severe manifestations of both diseases. Moreover, OA and OSA share risk factors, such as aging and metabolic disturbances, and co-morbidities, including cardiovascular and metabolic diseases, sleep deprivation and depression.

View Article and Find Full Text PDF

Mint species are widely used in traditional and conventional medicine as topical analgesics for osteoarthritic pain and for disorders of the gastrointestinal and respiratory tracts which are all associated with chronic inflammation. To identify the structural determinants of anti-inflammatory activity and potency which are required for chemical optimization towards development of new anti-inflammatory drugs, a selected group of monoterpenes especially abundant in mint species was screened by measuring bacterial lipopolysacharide (LPS)-induced nitric oxide (NO) production in murine macrophages. Nine compounds significantly decreased LPS-induced NO production by more than 30%.

View Article and Find Full Text PDF

In mammals, most molecular and cellular processes show circadian changes, leading to daily variations in physiology and ultimately in behaviour. Such daily variations induce a temporal coordination of processes that is essential to ensure homeostasis and health. Thus, it is of no surprise that pharmacokinetics (PK) and pharmacodynamics (PD) of many drugs are also subject to circadian variations, profoundly affecting their efficacy and tolerability.

View Article and Find Full Text PDF

We are glad to introduce the ninth Journal Club. This edition is focused on several relevant studies published in the last few years in the field of Exercise-Induced Immune Response, chosen by our Editorial Board members and their colleagues. We hope to stimulate your curiosity in this field and to share with you the passion for sport seen also from the scientific point of view.

View Article and Find Full Text PDF

Context/objective: Cell lines used to study the role of the G protein-coupled receptor 30 (GPR30) or G protein-coupled estrogen receptor (GPER) as a mediator of estrogen responses have yielded conflicting results. This work identified a simple assay to predict cell line competence for pharmacological studies of GPR30.

Materials And Methods: The phosphorylation or expression levels of ERK1/2, Akt, c-Fos and eNOS were evaluated to assess GPR30 activation in response to known agonists (17β-estradiol and G-1) in MCF-7 and T-47D breast cancer cell lines and in bovine aortic endothelial cells.

View Article and Find Full Text PDF

Osteoarthritis is a progressive joint disease and a major cause of disability for which no curative therapies are yet available. To identify compounds with potential anti-osteoarthritic properties, in this study, we screened one sesquiterpene, E-caryophyllene, and two monoterpenes, myrcene and limonene, hydrocarbon compounds for anti-inflammatory, anti-catabolic and pro-anabolic activities in human chondrocytes. At non-cytotoxic concentrations, myrcene and limonene inhibited IL-1β-induced nitric oxide production (IC50=37.

View Article and Find Full Text PDF

Chondrocytes are the resident cells of cartilage, which synthesize and maintain the extracellular matrix. The range of known potassium channels expressed by these unique cells is continually increasing. Since chondrocytes are non-excitable, and do not need to be repolarized following action potentials, the function of potassium channels in these cells has, until recently, remained completely unknown.

View Article and Find Full Text PDF

Nuclear factor-kappaB is a key transcription factor activated by pro-inflammatory signals, like interleukin-1beta (IL-1), being required for the expression of many inflammatory and catabolic mediators, such as nitric oxide (NO), that play an important role in arthritic diseases. This work aimed at screening and identifying natural inhibitors of IL-induced NF-kappaB activation and NO production in human articular chondrocytes. Five essential oils obtained from four plants of the Iberian flora, Mentha x piperita L.

View Article and Find Full Text PDF

Articular cartilage is a unique and highly specialized avascular connective tissue in which the availability of oxygen and glucose is significantly lower than synovial fluid and plasma. Glucose is an essential source of energy during embryonic growth and fetal development and is vital for mesenchymal cell differentiation, chondrogenesis, and skeletal morphogenesis. Glucose is an important metabolic fuel for differentiated chondrocytes during postnatal development and in adult articular cartilage and is a common structural precursor for the synthesis of extracellular matrix glycosaminoglycans.

View Article and Find Full Text PDF

Our previous studies showed that reactive oxygen species (ROS) are required for the pro-inflammatory cytokine interleukin-1 beta (IL-1) to induce the activity of the Nuclear transcription Factor-kappa B (NF-kappa B) and the expression of the inducible isoform of the nitric oxide synthase (iNOS) in bovine articular chondrocytes. This study aimed at elucidating the role of hydrogen peroxide (H(2)O(2)) and the superoxide radical, two major ROS, in mediating those IL-1-induced responses. The results obtained show that chondrocytes produce both H(2)O(2) and superoxide radical in response to IL-1.

View Article and Find Full Text PDF

Diacerhein and rhein are anthraquinone compounds that ameliorate the course of osteoarthritis. Recent reports also suggest that these compounds may have antiinflammatory properties, but the cellular mechanisms by which they exert antiosteoarthritic and possibly antiinflammatory effects are still incompletely understood. The purpose of this study was to investigate the ability of diacerhein and rhein to inhibit the activation of the transcription factor nuclear factor kappaB, induced by the proinflammatory cytokine interleukin-1beta, in primary monolayer cultures of bovine articular chondrocytes.

View Article and Find Full Text PDF