Aberrant cerebellar development and the associated neurocognitive deficits has been postulated in infants with congenital heart disease (CHD). Our objective is to investigate the effect of postnatal head and somatic growth on cerebellar development in neonates with CHD. We compared term-born neonates with a history of CHD with a cohort of preterm-born neonates, two cohorts at similar risk for neurodevelopment impairment, in order to determine if they are similarly affected in the early developmental period.
View Article and Find Full Text PDFObjective: Children, adolescents, and young adults with congenital heart defects (CHD) often display executive dysfunction. We consider the prefrontal and cerebellar brain structures as mechanisms for executive dysfunction among those with CHD.
Methods: 55 participants with CHD ( age = 13.
Deep neural networks are increasingly being used in both supervised learning for classification tasks and unsupervised learning to derive complex patterns from the input data. However, the successful implementation of deep neural networks using neuroimaging datasets requires adequate sample size for training and well-defined signal intensity based structural differentiation. There is a lack of effective automated diagnostic tools for the reliable detection of brain dysmaturation in the neonatal period, related to small sample size and complex undifferentiated brain structures, despite both translational research and clinical importance.
View Article and Find Full Text PDF