While -glyoxal may not be easily observable in astronomical sources through either IR or radioastronomy due to its symmetry, its conformer along with the -HCOCO epoxide isomer should be ready targets for astrochemical detection. The present quantum chemical study shows that not only are both molecular isomers strongly polar, they also have notable IR features and low isomerisation energies of 4.1 kcal mol and 10.
View Article and Find Full Text PDFHighly accurate anharmonic vibrational frequencies of electronically excited states are not as easily computed as their ground electronic state counterparts, but recently developed approximate triple excited state methods may be changing that. One emerging excited state method is equation of motion coupled cluster theory at the singles and doubles level with perturbative triples computed via the (a)* formalism, EOMEE-CCSD(T)(a)*. One of the most employed means for the ready computation of vibrational anharmonic frequencies for ground electronic states is second-order vibrational perturbation theory (VPT2), a theory based on quartic force fields (QFFs),fourth-order Taylor series expansions of the potential portion of the internuclear Watson Hamiltonian.
View Article and Find Full Text PDFThe F12-TZ-cCR quartic force field (QFF) methodology, defined here as CCSD(T)-F12b/cc-pCVTZ-F12 with further corrections for relativity, is introduced as a cheaper and even more accurate alternative to more costly composite QFF methods like those containing complete basis set extrapolations within canonical coupled cluster theory. F12-TZ-cCR QFFs produce and vibrationally averaged principal rotational constants within 7.5 MHz of gas-phase experimental values for tetraatomic and larger molecules, offering higher accuracy in these constants than the previous composite methods.
View Article and Find Full Text PDF