Neurovascular abnormalities in mouse models of 16p11.2 deletion autism syndrome are reminiscent of alterations reported in murine models of glucose transporter deficiency, including reduced brain angiogenesis and behavioral alterations. Yet, whether cerebrovascular alterations in 16p11.
View Article and Find Full Text PDFLearning or performing new behaviors requires significant neuronal signaling and is metabolically demanding. The metabolic cost of performing a behavior is mitigated by exposure and practice which result in diminished signaling and metabolic requirements. We examined the impact of novel and habituated wheel running, as well as effortful behaviors on the modulation of extracellular glucose and lactate using biosensors inserted in the primary motor cortex of mice.
View Article and Find Full Text PDFThere is evidence suggesting that the effects of diet and physical activity on physical and mental well-being are the result of altered metabolic profiles. Though the central and peripheral systems work in tandem, the interactions between peripheral and central changes that lead to these altered states of well-being remains elusive. We measured changes in the metabolic profile of brain (cortex) and muscle (soleus and plantaris) tissue in rats following 5-weeks of treadmill exercise and/or a high-fat diet to evaluate peripheral and central interactions as well as identify any common adaptive mechanisms.
View Article and Find Full Text PDFWe measured the extracellular glucose and lactate in the primary visual cortex in the CD-1 mouse using electrochemical electrodes. To gain some additional information on brain metabolism, we examined the impact of systemic injections of lactate and fructose on the brain extracellular glucose and lactate changes observed during visual stimulation. We found that simple stimulation using a flashlight produced a decrease in visual cortex extracellular glucose and an increase in extracellular lactate.
View Article and Find Full Text PDFClassic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse.
View Article and Find Full Text PDF