SUPPRESSOR OF MAX2 (SMAX)1-LIKE (SMXL) proteins are a plant-specific clade of type I HSP100/Clp-ATPases. SMXL genes are present in virtually all land plant genomes. However, they have mainly been studied in angiosperms.
View Article and Find Full Text PDFInteractions among plants have been long recognized as a major force driving plant community dynamics and crop yield. Surprisingly, our knowledge of the ecological genetics associated with variation of plant-plant interactions remains limited. In this opinion article by scientists from complementary disciplines, the international PLANTCOM network identified four timely questions to foster a better understanding of the mechanisms mediating plant assemblages.
View Article and Find Full Text PDFStrigolactones (SLs) are plant hormones exuded in the rhizosphere with a signaling role for the development of arbuscular mycorrhizal (AM) fungi and as stimulants of seed germination of the parasitic weeds , , and , the most threatening weeds of major crops worldwide. is present mainly on rape, hemp, and tobacco in France. 2a preferentially attacks hemp, while 1 attacks rapeseed.
View Article and Find Full Text PDFStrigolactones (SLs) are intriguing phytohormones that not only regulate plant development and architecture but also interact with other organisms in the rhizosphere as root parasitic plants (, and ) and arbuscular mycorrhizal fungi. Starting with a pioneering work in 2003 for the isolation and identification of the SL receptor in parasitic weeds, fluorescence labeling of analogs has proven a major strategy to gain knowledge in SL perception and signaling. Here, we present novel chemical tools for understanding the SL perception based on the enzymatic properties of SL receptors.
View Article and Find Full Text PDFKAI2 proteins are plant α/β hydrolase receptors which perceive smoke-derived butenolide signals and endogenous, yet unidentified KAI2-ligands (KLs). The number of functional KAI2 receptors varies among species and KAI2 gene duplication and sub-functionalization likely plays an adaptative role by altering specificity towards different KLs. Legumes represent one of the largest families of flowering plants and contain many agronomic crops.
View Article and Find Full Text PDFStrigolactones (SLs) are plant hormones and important signalling molecules required to promote arbuscular mycorrhizal (AM) symbiosis. While in plants an α/β-hydrolase, DWARF14 (D14), was shown to act as a receptor that binds and cleaves SLs, the fungal receptor for SLs is unknown. Since AM fungi are currently not genetically tractable, in this study, we used the fungal pathogen Cryphonectria parasitica, for which gene deletion protocols exist, as a model, as we have previously shown that it responds to SLs.
View Article and Find Full Text PDFis an obligate root-parasitic weed that threatens major crops in central Europe. In order to germinate, it must perceive various structurally divergent host-exuded signals, including isothiocyanates (ITCs) and strigolactones (SLs). However, the receptors involved are still uncharacterized.
View Article and Find Full Text PDFThe timing of leaf emergence at the shoot apical meristem, or plastochron, is highly regulated in plants. Among the genes known to regulate the plastochron in Arabidopsis (Arabidopsis thaliana), KLUH (KLU), orthologous to the rice (Oryza sativa) PLASTOCHRON1, encodes the cytochrome P450 CYP78A5, and is thought to act through generation of a still unknown mobile signal. As klu mutants display not only a short plastochron but also a branching phenotype reminiscent of strigolactone (SL) mutants, we investigated whether KLU/CYP78A5 is involved in SL biosynthesis.
View Article and Find Full Text PDFIn angiosperms, the α/β hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors.
View Article and Find Full Text PDFUncovering the basis of small-molecule hormone receptors' evolution is paramount to a complete understanding of how protein structure drives function. In plants, hormone receptors for strigolactones are well suited to evolutionary inquiries because closely related homologs have different ligand preferences. More importantly, because of facile plant transgenic systems, receptors can be swapped and quickly assessed functionally in vivo.
View Article and Find Full Text PDFDWARF53 (D53) in rice (Oryza sativa) and its homologs in Arabidopsis (Arabidopsis thaliana), SUPPRESSOR OF MAX2-LIKE 6 (SMXL6), SMXL7 and SMXL8, are well established negative regulators of strigolactone (SL) signalling in shoot branching regulation. Little is known of pea (Pisum sativum) homologs and whether D53 and related SMXLs are specific to SL signalling pathways. Here, we identify two allelic pea mutants, dormant3 (dor3), and demonstrate through gene mapping and sequencing that DOR3 corresponds to a homolog of D53 and SMXL6/SMXL7, designated PsSMXL7.
View Article and Find Full Text PDFIn this chapter, we will describe a method we set up to synthesize two profluorescent strigolactone (SL) mimic probes (GC240 and GC242) and the optimized protocols developed to study the enzymatic properties of various strigolactone receptors. The Arabidopsis AtD14 SL receptor is used here as a model for this purpose.
View Article and Find Full Text PDFStrigolactone (SL) plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. GR24, a synthetic SL analog, is the worldwide reference compound used in all bioassays for investigating the role of SLs in plant development and in rhizospheric interactions. In 2012, the first characterization of the SL receptor reported the detection of an unknown compound after incubation of GR24 samples with the SL receptor.
View Article and Find Full Text PDFStrigolactones (SLs) are key hormonal regulators of flowering plant development and are widely distributed amongst streptophytes. In Arabidopsis, SLs signal via the F-box protein MORE AXILLARY GROWTH2 (MAX2), affecting multiple aspects of development including shoot branching, root architecture and drought tolerance. Previous characterization of a Physcomitrella patens moss mutant with defective SL synthesis supports an ancient role for SLs in land plants, but the origin and evolution of signalling pathway components are unknown.
View Article and Find Full Text PDFStrigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes.
View Article and Find Full Text PDFThe cell-to-cell transport of signaling molecules is essential for multicellular organisms to coordinate the action of their cells. Recent studies identified DWARF14 (D14) as a receptor of strigolactones (SLs), molecules that act as plant hormones and inhibit shoot branching. Here, we demonstrate that RAMOSUS3, a pea ortholog of D14, works as a graft-transmissible signal to suppress shoot branching.
View Article and Find Full Text PDFStrigolactones (SLs) are known not only as plant hormones, but also as rhizosphere signals for establishing symbiotic and parasitic interactions. The design of new specific SL analogs is a challenging goal in understanding the basic plant biology and is also useful to control plant architectures without favoring the development of parasitic plants. Two different molecules (23 (3'-methyl-GR24), 31 (thia-3'-methyl-debranone-like molecule)) already described, and a new one (AR36), for which the synthesis is presented, are biologically compared with the well-known GR24 and the recently identified CISA-1.
View Article and Find Full Text PDFStrigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4.
View Article and Find Full Text PDFStrigolactones (SLs), a group of small carotenoid-derived molecules, were first known for their function in the rhizosphere in both symbiotic and parasitic interactions. Most of the progress for deciphering SL biosynthesis and signalling pathways comes from the use of high branching mutants identified in several species demonstrating that SLs also play a hormonal role in plant development. How SLs are perceived by the different organisms on which they show bioactivity is a current major challenge for the growing SL research community.
View Article and Find Full Text PDFStrigolactones (SLs), or their metabolites, were recently identified as endogenous inhibitors of shoot branching. However, certain key features and dynamics of SL action remained to be physiologically characterized. Here we show that successive direct application of SL to axillary buds at every node along the stem can fully inhibit branching.
View Article and Find Full Text PDFInitially known for their role in the rhizosphere in stimulating the seed germination of parasitic weeds such as the Striga and Orobanche species, and later as host recognition signals for arbuscular mycorrhizal fungi, strigolactones (SLs) were recently rediscovered as a new class of plant hormones involved in the control of shoot branching in plants. Herein, we report the synthesis of new SL analogs and, to our knowledge, the first study of SL structure-activity relationships for their hormonal activity in garden pea (Pisum sativum). Comparisons with their action for the germination of broomrape (Phelipanche ramosa) are also presented.
View Article and Find Full Text PDFThe function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes.
View Article and Find Full Text PDFCytokinin (CK) has long been implicated as a promoter of bud outgrowth in plants, but exactly how this is achieved in coordination with other plant hormones is unclear. The recent discovery of strigolactones (SLs) as the long-sought branch-inhibiting hormone allowed us to test how CK and SL coordinately regulate bud outgrowth in pea (Pisum sativum). We found that SL-deficient plants are more sensitive to stimulation of bud growth by low concentrations of locally applied CK than wild-type plants.
View Article and Find Full Text PDF