Parkinson's disease (PD) is a common neurodegenerative disorder characterized by symptoms such as bradykinesia, resting tremor, and rigidity, primarily driven by the degradation of dopaminergic (DA) neurons in the substantia nigra. A significant contributor to familial autosomal dominant PD cases is mutations in the LRRK2 gene, making it a primary therapeutic target. This study explores the role of microRNAs (miRNAs) in regulating the proteomic stress responses associated with neurodegeneration in PD using models.
View Article and Find Full Text PDFMicroRNAs (miRNAs) perform a pivotal role in the regulation of gene expression across the animal kingdom. As negative regulators of gene expression, miRNAs have been shown to function in the genetic pathways that control many biological processes and have been implicated in roles in human disease. First identified as an aging-associated gene in , miR-71, a miRNA, has a demonstrated capability of regulating processes in numerous different invertebrates, including platyhelminths, mollusks, and insects.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive, age-associated neurodegenerative disorder that affects an estimated 10 million people worldwide. PD is characterized by proteinaceous, cytoplasmic inclusions containing α-synuclein, called Lewy Bodies, which form in dopaminergic neurons in an age-dependent manner, and are associated with the emergence of characteristic PD symptoms such as resting tremor, rigidity, slow movements and postural instability. Although considerable progress has been made in recent years in identifying genetic and environmental factors that are associated with PD, early diagnosis and therapeutic options remain severely lacking.
View Article and Find Full Text PDFBiochem Mol Biol Educ
July 2017
This graduate-level DNA methods laboratory course is designed to model a discovery-based research project and engages students in both traditional DNA analysis methods and modern recombinant DNA cloning techniques. In the first part of the course, students clone the Drosophila ortholog of a human disease gene of their choosing using Gateway cloning. In the second part of the course, students examine the expression of their gene of interest in human cell lines by reverse transcription PCR and learn how to analyze data from quantitative reverse transcription PCR (qRT-PCR) experiments.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the most cases of dementia. AD affects more than 25 million people globally and is predicted to affect nearly one in 85 people worldwide by 2050. AD is characterized by the accumulation of dense plaques of β-amyloid peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau that cause impairment in memory, cognition, and daily activities.
View Article and Find Full Text PDFThe rapid development of deep sequencing technologies over the last few years and concomitant increases in sequencing depth and cost efficiencies have opened the door to a ever-widening range of applications in biology-from whole-genome sequencing, to ChIP-seq analysis, epigenomic and RNA transcriptome surveys. Here we describe the application of deep sequencing to the discovery of novel microRNAs and characterization of their differential expression during adulthood in Caenorhabditis elegans.
View Article and Find Full Text PDFBackground: Dietary restriction (DR) has been shown to prolong longevity across diverse taxa, yet the mechanistic relationship between DR and longevity remains unclear. MicroRNAs (miRNAs) control aging-related functions such as metabolism and lifespan through regulation of genes in insulin signaling, mitochondrial respiration, and protein homeostasis.
Results: We have conducted a network analysis of aging-associated miRNAs connected to transcription factors PHA-4/FOXA and SKN-1/Nrf, which are both necessary for DR-induced lifespan extension in Caenorhabditis elegans.
MicroRNAs (miRNAs) are endogenous small RNA molecules that regulate gene expression post-transcriptionally. Work in Caenorhabditis elegans has shown that specific miRNAs function in lifespan regulation and in a variety of age-associated pathways, but the roles of miRNAs in the aging of vertebrates are not well understood. We examined the expression of small RNAs in whole brains of young and old mice by deep sequencing and report here on the expression of 558 known miRNAs and identification of 41 novel miRNAs.
View Article and Find Full Text PDFBackground: aging is under genetic control in C. elegans, but the mechanisms of life-span regulation are not completely known. MicroRNAs (miRNAs) regulate various aspects of development and metabolism, and one miRNA has been previously implicated in life span.
View Article and Find Full Text PDFBackground: Small non-coding RNAs, including microRNAs (miRNAs), serve an important role in controlling gene expression during development and disease. However, little detailed information exists concerning the relative expression patterns of small RNAs during development of animals such as Caenorhabditis elegans.
Results: We performed a deep analysis of small RNA expression in C.
Despite the central role of group II introns in eukaryotic gene expression and their importance as biophysical and evolutionary model systems, group II intron tertiary structure is not well understood. In order to characterize the architectural organization of intron ai5gamma, we incorporated the photoreactive nucleotides s(4)U and s(6)dG at specific locations within the intron core and monitored the formation of cross-links in folded complexes. The resulting data reveal the locations for many of the most conserved, catalytically important regions of the intron (i.
View Article and Find Full Text PDFDespite the biological importance of self-splicing group II introns, little is known about their structural organization. Synthetic incorporation of site-specific photo-cross-linkers within catalytic domains resulted in functional distance constraints that, when combined with known tertiary interactions, provide a three-dimensional view of the active intron architecture. All functionalities important for both steps of splicing are proximal before the first step, suggestive of a single active-site region for group II intron catalysis.
View Article and Find Full Text PDF