Publications by authors named "Alexandre Yersin"

Transferrin receptor 2 (TfR2), a homologue of the classical transferrin receptor 1 (TfR1), is found in two isoforms, alpha and beta. Like TfR1, TfR2alpha is a type II membrane protein, but the beta form lacks transmembrane portions and therefore is likely to be an intracellular protein. To investigate the functional properties of TfR2alpha, we expressed the protein with FLAG tagging in transferrin-receptor-deficient Chinese hamster ovary cells.

View Article and Find Full Text PDF

Glycophorin A (GpA) is one of the most abundant transmembrane proteins in human erythrocytes and its interaction with lectins has been studied as model systems for erythrocyte related biological processes. We performed a force measurement study using the force mode of atomic force microscopy (AFM) to investigate the single molecular level biophysical mechanisms involved in GpA-lectin interactions. GpA was mounted on a mica surface or natively presented on the erythrocyte membrane and probed with an AFM tip coated with the monomeric but multivalent Psathyrella velutina lectin (PVL) through covalent crosslinkers.

View Article and Find Full Text PDF

Adaptation of a cell behavior to the environment is possible due to the biochemical and physical information that is transmitted through molecular receptor present at the cell surface. Regulation of receptor distribution and trafficking is thus a key feature to allow cells to properly respond to extracellular signals. Many of the molecular mechanisms that support receptor trafficking occurs at a submicrometric scale and are highly dynamic.

View Article and Find Full Text PDF

Many approaches have been developed to characterize the heterogeneity of membranes in living cells. In this study, the elastic properties of specific membrane domains in living cells are characterized by atomic force microscopy. Our data reveal the existence of heterogeneous nanometric scale domains with specific biophysical properties.

View Article and Find Full Text PDF

Interaction between the iron transporter protein transferrin (Tf) and its receptor at the cell surface is fundamental for most living organisms. Tf receptor (TfR) binds iron-loaded Tf (holo-Tf) and transports it to endosomes, where acidic pH favors iron release. Iron-free Tf (apo-Tf) is then brought back to the cell surface and dissociates from TfR.

View Article and Find Full Text PDF

Although various approaches are routinely used to study receptor trafficking, a technology that allows for visualizing trafficking of single receptors at the surface of living cells remains lacking. Here we used atomic force microscope to simultaneously probe the topography of living cells, record the elastic properties of their surface, and examine the distribution of transfected alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA)-type glutamate receptors (AMPAR). On nonstimulated neurons, AMPARs were located in stiff nanodomains with high elasticity modulus relative to the remaining cell surface.

View Article and Find Full Text PDF

The number of synaptic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPARs) controls the strength of excitatory transmission. AMPARs cycle between internal endosomal compartments and the plasma membrane. Interactions between the AMPAR subunit GluR2, glutamate receptor interacting protein 1 (GRIP1), and the endosomal protein NEEP21 are essential for correct GluR2 recycling.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that a protein called NEEP21 helps move AMPA-type receptors (which are important for learning) around in brain cells.
  • This movement is affected by brain activity and involves another protein called GRIP1.
  • When a part of NEEP21 is introduced into brain cells, it stops the receptors from getting to their right place, which can change how signals are sent in the brain.
View Article and Find Full Text PDF

Changes in mechanical properties of the cytoplasm have been implicated in cell motility, but there is little information about these properties in specific regions of the cell at specific stages of the cell migration process. Fish epidermal keratocytes with their stable shape and steady motion represent an ideal system to elucidate temporal and spatial dynamics of the mechanical state of the cytoplasm. As the shape of the cell does not change during motion and actin network in the lamellipodia is nearly stationary with respect to the substrate, the spatial changes in the direction from the front to the rear of the cell reflect temporal changes in the actin network after its assembly at the leading edge.

View Article and Find Full Text PDF