According to the developmental origins of health and diseases (DOHaD), and in line with the findings of many studies, obesity during pregnancy is clearly a threat to the health and well-being of the offspring, later in adulthood. We previously showed that 20% of male and female inbred mice can cope with the obesogenic effects of a high-fat diet (HFD) for 20 weeks after weaning, remaining lean. However the feeding of a control diet (CD) to DIO mice during the periconceptional/gestation/lactation period led to a pronounced sex-specific shift (17% to 43%) from susceptibility to resistance to HFD, in the female offspring only.
View Article and Find Full Text PDFAims: To determine the efficacy in pain reduction of a topical 1% lidocaine compared to a placebo cream in patients with oral mucosal lesions due to trauma or minor oral aphthous ulcer.
Methods: The design was a double-blind, randomized, placebo-controlled, six-center trial on 59 patients. Pain intensity and relief were measured using a 100-mm visual analog scale (VAS).
Background: Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable.
Methods And Findings: We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of imprinted genes and local and global DNA methylation patterns in the placenta.
There is accumulating evidence for nongenetic transgenerational inheritance with conspicuous marked sexual dimorphism for both the modes of transmission and the effects. Given the critical spatiotemporal windows, the role of the sex chromosomes, the regulatory pathways underlying sexual differentiation during gonad and brain development, and other developmental processes, as well as the lifelong impact of sex hormones, it is not surprising that most of the common diseases, which often take root in early development, display some degree of sex bias. The flexibility of epigenetic marks may make it possible for environmental and nutritional factors, or endocrine disruptors to alter-during a particular spatiotemporal window in a sex-specific manner-the sex-specific methylation or demethylation of specific CpGs and histone/chromatin modifications underlying sex-specific expression of a substantial proportion of genes.
View Article and Find Full Text PDFEpigenetic misprogramming during development is widely thought to have a persistent effect on the health of the offspring and may even be transmitted to the next generation. However, little is known about the stochastically, genetically and environmentally triggered epimutations occurring during an individual's lifetime. They may result from replication-dependent, replication-independent or DNA repair events.
View Article and Find Full Text PDFObjective: The aim of this study was to assess the suitability of A/J and C57BL/6J mice of both sexes as models of some components of the human metabolic syndrome (MetS) under nutritional conditions more comparable with the actual worldwide diet responsible for the increased incidence of the MetS.
Research Methods: We fed large cohorts (n = 515) of two strains of mice, A/J and the C57BL/6J, and of both sexes a high-fat diet (HFD; 60% fat) that, in contrast with most previous reports using saturated fats, was enriched in mono- and polyunsaturated fatty acids, thus more closely mimicking most Western diets, or a control diet (10% fat), for 20 weeks.
Results: In sharp contrast to previous reports, weight gain and hyperleptinemia were similar in both strains and sexes.
The phenotype of an individual is the result of complex interactions between genotype, epigenome and current, past and ancestral environment, leading to lifelong remodelling of our epigenomes. Various replication-dependent and -independent epigenetic mechanisms are involved in developmental programming, lifelong stochastic and environmental deteriorations, circadian deteriorations, and transgenerational effects. Several types of sequences can be targets of a host of environmental factors and can be associated with specific epigenetic signatures and patterns of gene expression.
View Article and Find Full Text PDFWith the worldwide epidemic of metabolic syndrome (MetS), the proportion of women that are overweight/obese and overfed during pregnancy has increased. The resulting abnormal uterine environment may have deleterious effects on fetal metabolic programming and lead to MetS in adulthood. A balanced/restricted diet and/or physical exercise often improve metabolic abnormalities in individuals with obesity and type 2 diabetes mellitus (T2D).
View Article and Find Full Text PDFThe importance of epigenetic alterations has been acknowledged in cancer for about two decades by an increasing number of molecular oncologists who contributed to deciphering the epigenetic codes and machinery and opened the road for a new generation of drugs now in clinical trials. However, the relevance of epigenetics to common diseases such as metabolic syndrome and cardiovascular disease was less conspicuous. This review focuses on converging data supporting the hypothesis that, in addition to "thrifty genotype" inheritance, individuals with metabolic syndrome (MetS)--combining disturbances in glucose and insulin metabolism, excess of predominantly abdominally distributed weight, mild dyslipidemia and hypertension, with the subsequent development of obesity, type 2 diabetes mellitus (T2D) and cardiovascular disease (CVD)--have suffered improper "epigenetic programing" during their fetal/postnatal development due to maternal inadequate nutrition and metabolic disturbances and also during their life-time.
View Article and Find Full Text PDFThe importance of epigenetic alterations has been acknowledged in cancer for about two decades by an increasing number of molecular oncologists who contributed to deciphering the epigenetic codes and machinery and opened the road for a new generation of drugs now in clinical trials. However, the relevance of epigenetics to common diseases such as metabolic syndrome and cardiovascular disease was less conspicuous. This review focuses on converging data supporting the hypothesis that, in addition to "thrifty genotype" inheritance, individuals with metabolic syndrome (MetS)--combining disturbances in glucose and insulin metabolism, excess of predominantly abdominally distributed weight, mild dyslipidemia and hypertension, with the subsequent development of obesity, type 2 diabetes mellitus (T2D) and cardiovascular disease (CVD)--have suffered improper "epigenetic programming" during their fetal/postnatal development due to maternal inadequate nutrition and metabolic disturbances and also during their lifetime.
View Article and Find Full Text PDF