Publications by authors named "Alexandre Vial"

In this contribution, we assess the performance of symbolic regression (SR) when used to model the optical response of biological and bio-inspired structures. To this end, we search for analytical closed-form expressions that model the reflectance spectra related to the bird's plumage and the porous structure inspired on the beetle. Our numerical results demonstrate the high prediction accuracy of the employed symbolic regression scheme.

View Article and Find Full Text PDF

In this contribution we explore the possibilities and limitations of symbolic regression as an alternative to the approaches currently used to characterize the dispersive behavior of a given material. To this end, we make use of genetic programming to retrieve, from either ellipsometric or spectral data, closed-form expressions that model the optical properties of the materials studied. In a first stage we consider transparent dielectrics for our numerical experiments.

View Article and Find Full Text PDF

By means of heuristic optimization techniques, we estimate the unknown refractive index of one layer of a periodic natural multilayer system from far-field reflectance data. To take into account the dispersive characteristics of the material, we employ two different strategies. The first is based on the retrieval of Lorentz model-related parameters, to describe the unknown dielectric permittivity within a specific spectral range.

View Article and Find Full Text PDF

We demonstrate two-color nanoemitters that enable the selection of the dominant emitting wavelength by varying the polarization of excitation light. The nanoemitters were fabricated via surface plasmon-triggered two-photon polymerization. By using two polymerizable solutions with different quantum dots, emitters of different colors can be positioned selectively in different orientations in the close vicinity of the metal nanoparticles.

View Article and Find Full Text PDF

Optical elements based on Fresnel zones are used in a range of applications, from X-ray telescopy to microscopy and recently also in the manipulation of de Broglie matter waves. In 1992 Beynon and co-workers presented a binary Gabor type zone plate (henceforth referred to as the Beynon Gabor zone plate). Because this zone plate has no higher order foci, it is in principle a very attractive candidate for focusing of de Broglie matter waves and in some cases X-rays.

View Article and Find Full Text PDF

We investigate the iridescence exhibited by Ceroglossus suturalis beetles, which mostly live endemically in the southern end of South America. Two differently colored specimens have been studied. We observed and characterized the samples by different microscopy techniques, which revealed a multilayer structure within their cuticle.

View Article and Find Full Text PDF

Natural photonic structures exhibit remarkable color effects such as metallic appearance and iridescence. A rigorous study of the electromagnetic response of such complex structures requires to accurately determine some of their relevant optical parameters, such as the refractive indices of the materials involved. In this paper, we apply different heuristic optimization strategies to retrieve the real and imaginary parts of the refractive index of the materials comprising natural multilayer systems.

View Article and Find Full Text PDF

We report on the emission of hybrid nanosources composed of gold nanoparticles coupled with quantum dots. The emission relies on energy transfer from the quantum dots to gold nanoparticles which could be de-excited through radiative plasmon relaxation. The dependence of the emission efficiency is studied systematically as a function of the size of gold nanoparticles and interdistance between gold nanoparticles and quantum dots.

View Article and Find Full Text PDF

We numerically investigate arrays of metallic nanoparticles deposited on a glass substrate and covered by a liquid-crystal material. Extinction spectra at normal incidence are computed using the finite-difference time-domain method, and we show that by rotating the optical axis around an axis orthogonal to the main direction of illumination, it is possible to tune the resonance of the system according to a simple law. The spectral width of the tunability is studied as a function of different parameters.

View Article and Find Full Text PDF

We report the observation of temporally varying electromagnetic hot spots in plasmonic nanostructures. Changes in the field amplitude, position, and spatial features are induced by embedding plasmonic silver nanorods in the photoresponsive azo-polymer. This polymer undergoes cis-trans isomerization and wormlike transport within resonant optical fields, producing a time-varying local dielectric environment that alters the locations where electromagnetic hot spots are produced.

View Article and Find Full Text PDF

We compare the numerical results obtained by the Finite Element Method (FEM) and the Finite Difference Time Domain Method (FDTD) for near-field spectroscopic studies and intensity map computations. We evaluate their respective efficiencies and we show that an accurate description of the dispersion and of the geometry of the material must be included for a realistic modeling. In particular for the nano-objects, we show that a grid size around rhoa approximately 4pia/lambda (expressed in lambda units) as well as a Drude-Lorentz' model of dispersion for FDTD should be used in order to describe more accurately the confinement of the light around the nanostructures (i.

View Article and Find Full Text PDF

The local perturbation of a diffraction-limited spot by a nanometer sized gold tip in a popular apertureless scanning near-field optical microscopy (ASNOM) configuration is reproduced through topography changes in a photoresponsive polymer. Our method relies on the observation of the photochemical migration of azobenzene molecules grafted to a polymer placed beneath the tip. A local molecular displacement has been shown to be activated by a gold tip as a consequence of the lateral surface charge density present at the edges of the tip's end, resulting from a strong near-field depolarization predicted by theory.

View Article and Find Full Text PDF

The sub-diffraction imaging of the optical near-field in nanostructures, based on a photochemical technique, is reported. A photosensitive azobenzene-dye polymer is spin coated onto lithographic structures and is subsequently irradiated with laser light. Photoinduced mass transport creates topographic modifications at the polymer film surface that are then measured with atomic force microscopy (AFM).

View Article and Find Full Text PDF

We introduce an inversion procedure for the characterization of a nanostructure from near-field intensity data. The method proposed is based on heuristic arguments and makes use of evolution strategies for the solution of the inverse problem as a nonlinear constrained-optimization problem. By means of some examples we illustrate the performance of our inversion method.

View Article and Find Full Text PDF