The charge transport of crystalline organic semiconductors is limited by dynamic disorder that tends to localize charges. It is the main hurdle to overcome in order to significantly increase charge carrier mobility. An innovative design that combines a chemical structure based on sulfur-rich thienoacene with a solid-state herringbone (HB) packing is proposed and the synthesis, physicochemical characterization, and charge transport properties of two new thienoacenes bearing a central tetrathienyl core fused with two external naphthyl rings: naphtho[2,3-b]thieno-[2''',3''':4'',5'']thieno[2″,3″:4',5']thieno[3',2'-b]naphtho[2,3-b]thiophene (DN4T) and naphtho[1,2-b]thieno-[2''',3''':4'',5'']thieno[2'',3'':4',5']thieno[3',2'-b]naphtho[1,2-b]thiophene are presented.
View Article and Find Full Text PDFWhile the charge transport properties of organic semiconductors have been extensively studied over the recent years, the field of organics-based thermoelectrics is still limited by a lack of experimental data on thermal transport and of understanding of the associated structure-property relationships. To fill this gap, a comprehensive experimental and theoretical investigation of the lattice thermal conductivity in polycrystalline thin films of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (Cn-DNTT-Cn with n = 0, 8) semiconductors is reported. Strikingly, thermal conductivity appears to be much more isotropic than charge transport, which is confined to the 2D molecular layers.
View Article and Find Full Text PDFWe study by scanning thermal microscopy the nanoscale thermal conductance of films (40-400 nm thick) of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8). We demonstrate that the out-of-plane thermal conductivity is significant along the interlayer direction, larger for BTBT (0.63 ± 0.
View Article and Find Full Text PDFThe original version of this article incorrectly listed an affiliation of Sara Bonacchi as 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada', instead of the correct 'Present address: Department of Chemical Sciences - University of Padua - Via Francesco Marzolo 1 - 35131 Padova - Italy'. And an affiliation of Emanuele Orgiu was incorrectly listed as 'Present address: Department of Chemical Sciences, University of Padua, Via Francesco Marzolo 1, Padova, 35131, Italy', instead of the correct 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada'. This has been corrected in both the PDF and HTML versions of the article.
View Article and Find Full Text PDFMolecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices.
View Article and Find Full Text PDF