Publications by authors named "Alexandre V Loguinov"

The use of chemical flame-retardants (FR) in consumer products has steadily increased over the last 30 years. Toxicity data exist for legacy FRs such as pentabromodiphenyl ether (pentaBDE), but less is known about effects of new formulations. To address this issue, the toxicity of seven FR chemicals and formulations was assessed on the freshwater crustacean Daphnia magna.

View Article and Find Full Text PDF

Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physicochemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna . Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag(+) release and underwent a significant morphological transformation within 1 h following addition to low ionic strength Daphnia growth media.

View Article and Find Full Text PDF

Omic technologies offer unprecedented opportunities to better understand mode(s)-of-toxicity and downstream secondary effects by providing a holistic view of the molecular changes underlying physiological disruption. Crustacean hemolymph represents a largely untapped biochemical resource for such toxicity studies. We sought to characterize changes in the hemolymph metabolome and whole-body transcriptome to reveal early processes leading to chronic toxicity in the indicator species, Daphnia magna, after 24-h sublethal cadmium exposure (18 μg/L, corresponding to 1/10 LC(50)).

View Article and Find Full Text PDF

Genomic technologies show great potential for classifying disease states and toxicological impacts from exposure to chemicals into functional categories. In environmental monitoring, the ability to classify field samples and predict the pollutants present in these samples could contribute to monitoring efforts and the diagnosis of contaminated sites. Using gene expression analysis, we challenged our custom Daphnia magna cDNA microarray to determine the presence of a specific metal toxicant in blinded field samples collected from two copper mines in California.

View Article and Find Full Text PDF
Article Synopsis
  • Ecotoxicogenomic methods enhance environmental monitoring by offering a comprehensive view of toxic effects beyond just death and reproduction, allowing for better assessment of toxic agents in wastewater.
  • Recent studies emphasize the importance of dose-dependent changes in gene expression when interpreting the effects of toxicants, with a focus on developing the No Observed Transcriptional Effect Level (NOTEL) as a screening tool for effluents.
  • Investigating gene expression in Daphnia magna exposed to various metal concentrations revealed distinct expression profiles, suggesting that such analyses can help differentiate between toxic and non-toxic levels and inform understanding of the specific effects of metals on metabolic processes.
View Article and Find Full Text PDF

Toxicogenomics has provided innovative approaches to chemical screening, risk assessment, and predictive toxicology. If applied to ecotoxicology, genomics tools could greatly enhance the ability to understand the modes of toxicity in environmentally relevant organisms. Daphnia magna, a small aquatic crustacean, is considered a "keystone" species in ecological food webs and is an indicator species for toxicant exposure.

View Article and Find Full Text PDF