Dopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood.
View Article and Find Full Text PDFStriatal dopamine D1 receptors (D1R) are coupled to adenylyl cyclase through Galphaolf. Although this pathway is involved in important brain functions, the consequences of quantitative alterations of its components are not known. We explored the biochemical and behavioral responses to cocaine and D-amphetamine (D-amph) in mice with heterozygous mutations of genes encoding D1R and Galphaolf (Drd1a+/- and Gnal+/-), which express decreased levels of the corresponding proteins in the striatum.
View Article and Find Full Text PDFMany drugs of abuse exert their addictive effects by increasing extracellular dopamine in the nucleus accumbens, where they likely alter the plasticity of corticostriatal glutamatergic transmission. This mechanism implies key molecular alterations in neurons in which both dopamine and glutamate inputs are activated. Extracellular signal-regulated kinase (ERK), an enzyme important for long-term synaptic plasticity, is a good candidate for playing such a role.
View Article and Find Full Text PDF