Publications by authors named "Alexandre Seyer"

Article Synopsis
  • * Researchers found that this mouse model exhibited symptoms similar to human patients, identifying vitamin B2 and other compounds as potential biomarkers for diagnosis and monitoring the disease.
  • * The study suggested that deficiencies in the CYP2U1 enzyme disrupts mitochondrial function and neurodevelopment but may be mitigated by folate supplementation, highlighting possible avenues for therapeutic intervention.
View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a rare genetic disorder affecting paediatric patients. The disease course is characterized by loss of muscle mass, which is rapidly substituted by fibrotic and adipose tissue. Clinical and preclinical models have clarified the processes leading to muscle damage and myofiber degeneration.

View Article and Find Full Text PDF

Biotin is an essential cofactor for carboxylases that regulates the energy metabolism. Recently, high-dose pharmaceutical-grade biotin (MD1003) was shown to improve clinical parameters in a subset of patients with chronic progressive multiple sclerosis. To gain insight into the mechanisms of action, we investigated the efficacy of high-dose biotin in a genetic model of chronic axonopathy caused by oxidative damage and bioenergetic failure, the Abcd1 mouse model of adrenomyeloneuropathy.

View Article and Find Full Text PDF

Nutritional changes during developmental windows are of particular concern in offspring metabolic disease. Questions are emerging concerning the role of maternal weight changes before conception, particularly for weight loss, in the development of diet-related disorders. Understanding the physiological pathways affected by the maternal trajectories in the offspring is therefore essential, but a broad overview is still lacking.

View Article and Find Full Text PDF

Constant improvements to the Orbitrap mass analyzer, such as acquisition speed, resolution, dynamic range and sensitivity have strengthened its value for the large-scale identification and quantification of metabolites in complex biological matrices. Here, we report the development and optimization of Data Dependent Acquisition (DDA) and Sequential Window Acquisition of all THeoretical fragment ions (SWATH-type) Data Independent Acquisition (DIA) workflows on a high-field Orbitrap Fusion Tribrid instrument for the robust identification and quantification of metabolites in human plasma. By using a set of 47 exogenous and 72 endogenous molecules, we compared the efficiency and complementarity of both approaches.

View Article and Find Full Text PDF

Duchenne muscular dystrophy is a severe pediatric neuromuscular disorder caused by the lack of dystrophin. Identification of biomarkers is needed to support and accelerate drug development. Alterations of metabolites levels in muscle and plasma have been reported in pre-clinical and clinical cross-sectional comparisons.

View Article and Find Full Text PDF

Ovarian follicle provides a favorable environment for enclosed oocytes, which acquire their competence in supporting embryo development in tight communications with somatic follicular cells and follicular fluid (FF). Although steroidogenesis in theca (TH) and granulosa cells (GC) is largely studied, and the molecular mechanisms of fatty acid (FA) metabolism in cumulus cells (CC) and oocytes are emerging, little data is available regarding lipid metabolism regulation within ovarian follicles. In this study, we investigated lipid composition and the transcriptional regulation of FA metabolism in 3⁻8 mm ovarian follicles in bovine.

View Article and Find Full Text PDF

Axonopathies are neurodegenerative disorders caused by axonal degeneration, affecting predominantly the longest neurons. Several of these axonopathies are caused by genetic defects in proteins involved in the shaping and dynamics of the endoplasmic reticulum (ER); however, it is unclear how these defects impinge on neuronal survival. Given its central and widespread position within a cell, the ER is a pivotal player in inter-organelle communication.

View Article and Find Full Text PDF

Lysosome membrane recycling occurs at the end of the autophagic pathway and requires proteins that are mostly encoded by genes mutated in neurodegenerative diseases. However, its implication in neuronal death is still unclear. Here, we show that spatacsin, which is required for lysosome recycling and whose loss of function leads to hereditary spastic paraplegia 11 (SPG11), promotes clearance of gangliosides from lysosomes in mouse and human SPG11 models.

View Article and Find Full Text PDF

Background: Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by expansion of the polyglutamine repeat in the ataxin-3 protein. Expression of mutant ataxin-3 is known to result in transcriptional dysregulation, which can contribute to the cellular toxicity and neurodegeneration. Since the exact causative mechanisms underlying this process have not been fully elucidated, gene expression analyses in brains of transgenic SCA3 mouse models may provide useful insights.

View Article and Find Full Text PDF

Muscular dystrophies are characterized by a progressive loss of muscle tissue and/or muscle function. While metabolic alterations have been described in patients'-derived muscle biopsies, non-invasive readouts able to describe these alterations are needed in order to objectively monitor muscle condition and response to treatment targeting metabolic abnormalities. We used a metabolomic approach to study metabolites concentration in serum of patients affected by multiple forms of muscular dystrophy such as Duchenne and Becker muscular dystrophies, limb-girdle muscular dystrophies type 2A and 2B, myotonic dystrophy type 1 and facioscapulohumeral muscular dystrophy.

View Article and Find Full Text PDF

The growing number of modalities (e.g. multi-omics, imaging and clinical data) characterizing a given disease provides physicians and statisticians with complementary facets reflecting the disease process but emphasizes the need for novel statistical methods of data analysis able to unify these views.

View Article and Find Full Text PDF

Introduction: Due to its proximity with the brain, cerebrospinal fluid (CSF) could be a medium of choice for the discovery of biomarkers of neurological and psychiatric diseases using untargeted analytical approaches.

Objectives: This study explored the CSF lipidome in order to generate a robust mass spectral database using an untargeted lipidomic approach.

Methods: Cerebrospinal fluid samples from 45 individuals were analyzed by liquid chromatography coupled to high-resolution mass spectrometry method (LC-HRMS).

View Article and Find Full Text PDF

A new in vitro microfluidic platform (integrated insert dynamic microfluidic platform, IIDMP) allowing the co-culture of intestinal Caco-2 TC7 cells and of human primary hepatocytes was used to test the absorption and first-pass metabolism of two drugs: phenacetin and omeprazole. The metabolism of these drugs by CYP1A2, CYP2C19 and CYP3A4 was evaluated by the calculation of bioavailabilities and of intrinsic clearances using a pharmacokinetic (PK) model. To demonstrate the usefulness of the device and of the PK model, predictions were compared with in vitro and in vivo results from the literature.

View Article and Find Full Text PDF

Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers.

View Article and Find Full Text PDF

Lipids are natural substances found in all living organisms. Essential to the integrity of cell membranes, they also have many biological functions linked to energy storage and cell signaling, and are involved in a large number of heterogeneous diseases such as cancer, diabetes, neurological disorders, and inherited metabolic diseases. Lipids are challenging to analyze because of their huge structural diversity and numerous species.

View Article and Find Full Text PDF

Intestinal absorption of dietary fat is a complex process mediated by enterocytes leading to lipid assembly and secretion of circulating lipoproteins as chylomicrons, vLDL and intestinal HDL (iHDL). Understanding lipid digestion is of importance knowing the correlation between excessive fat absorption and atherosclerosis. By using time-of-flight secondary ion mass spectrometry (TOF-SIMS), we illustrated a spatio-temporal localization of fat in mice duodenum, at different times of digestion after a lipid gavage, for the first time.

View Article and Find Full Text PDF

The 60th American Society for Mass Spectrometry (ASMS) Conference on MS and Allied Topics was held in May 2012 at Vancouver in Canada. This international congress is the largest forum exclusively dedicated to MS through its diverse aspects: fundamental, method development and applications to biomolecules. This 4-day conference is also highly appreciated for discussion with the MS manufacturers presenting their latest instrumental developments.

View Article and Find Full Text PDF

Epsilon toxin (ETX) is one of the most lethal toxins produced by Clostridium species and is considered as a potential bioterrorist weapon. Here, we present a rapid mass spectrometry-based method for ETX quantification in complex matrixes. As a prerequisite, naturally occurring prototoxin and toxin species were first structurally characterized by top-down and bottom-up experiments, to identify the most pertinent peptides for quantification.

View Article and Find Full Text PDF

Cyclic lipopeptides (cLPs) of the surfactin, iturin and fengycin families synthesized by plant-associated Bacilli represent an important class of antibiotics as they may be tightly involved in the protective effect of selected strains against phytopathogens. However, their production by Bacillus cells developing on roots under rhizosphere conditions is still poorly understood. In this work, we combined electrospray and imaging mass spectrometry-based approaches to determine the detailed pattern of surfactins, iturins and fengycins produced in planta by Bacillus amyloliquefaciens S499.

View Article and Find Full Text PDF

Deca-bromo-diphenyl ether (DBDE) is one of the most efficient brominated flame retardant (BFR) available on the market. We recently demonstrated that when administered to female rat by oral route, DBDE is efficiently absorbed, with the highest residual concentrations found in two endocrine glands, namely the adrenal glands and the ovaries. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging, a technique usually used for the study of endogenous compounds, was applied for the first time to a persistent organic pollutant, allowing to detect and to precisely localize DBDE residues in these two target tissues.

View Article and Find Full Text PDF

The cftr knockout mouse model of cystic fibrosis (CF) shows intestinal obstruction; malabsorption and inflammation; and a fatty acid imbalance in intestinal mucosa. We performed a lipid mapping of colon sections from CF and control (WT) mice by cluster time of flight secondary-ion mass spectrometry (TOF-SIMS) imaging to localize lipid alterations. Data were processed either manually or by multivariate statistical methods.

View Article and Find Full Text PDF

Time-of-flight secondary ion mass spectrometry imaging has been used to map flavonoids in fresh seed sections of peas (Pisum sativum) and Arabidopsis thaliana. While for peas a very simple preparation method derived from mammalian tissue imaging could be utilized, several preparation methods had to be tested for the A. thaliana seeds before obtaining tissue sections on which the diagnostic ions were not delocalized.

View Article and Find Full Text PDF

Mass spectrometry imaging is becoming a more and more widely used method for chemical mapping of organic and inorganic compounds from various surfaces, especially tissue sections. Two main different techniques are now available: matrix-assisted laser desorption/ionizaton, where the sample, preliminary coated by an organic matrix, is analyzed by a UV laser beam; and secondary ion mass spectrometry, for which the target is directly submitted to a focused ion beam. Both techniques revealed excellent performances for lipid mapping of tissue surfaces.

View Article and Find Full Text PDF