Publications by authors named "Alexandre Serantes"

As an effective theory, relativistic hydrodynamics is fixed by symmetries up to a set of transport coefficients. A lot of effort has been devoted to explicit calculations of these coefficients. Here we adopt a more general approach, deploying bootstrap techniques to rule out theories that are inconsistent with microscopic causality.

View Article and Find Full Text PDF

We use causality to derive a number of simple and universal constraints on dispersion relations, which describe the location of singularities of retarded two-point functions in relativistic quantum field theories. We prove that all causal dissipative dispersion relations have a finite radius of convergence in cases where stochastic fluctuations are negligible. We then give two-sided bounds on all transport coefficients in units of this radius, including an upper bound on diffusivity.

View Article and Find Full Text PDF

The gradient expansion is the fundamental organizing principle underlying relativistic hydrodynamics, yet understanding its convergence properties for general nonlinear flows has posed a major challenge. We introduce a simple method to address this question in a class of fluids modeled by Israel-Stewart-type relaxation equations. We apply it to (1+1)-dimensional flows and provide numerical evidence for factorially divergent gradient expansions.

View Article and Find Full Text PDF