Publications by authors named "Alexandre Roulet"

In recent years substantial efforts have been expended in extending thermodynamics to single quantum systems. Quantum effects have emerged as a resource that can improve the performance of heat machines. However in the fully quantum regime their implementation still remains a challenge.

View Article and Find Full Text PDF

We derive the work cost of using generalized thermal baths from the physical equivalence of quantum mechanics under unitary transformations. We demonstrate our method by considering a qubit extracting work from a single bath to amplify a cavity field. There, we find that only half of the work investment is converted into useful output, the rest being wasted as heat.

View Article and Find Full Text PDF

We study synchronization in a two-node network built out of the smallest possible self-sustained oscillator: a spin-1 oscillator. We first demonstrate that phase locking between the quantum oscillators can be achieved, even for limit cycles that cannot be synchronized to an external semiclassical signal. Building upon the analytical description of the system, we then clarify the relation between quantum synchronization and the generation of entanglement.

View Article and Find Full Text PDF

We investigate the minimal Hilbert-space dimension for a system to be synchronized. We first show that qubits cannot be synchronized due to the lack of a limit cycle. Moving to larger spin values, we demonstrate that a single spin 1 can be phase locked to a weak external signal of similar frequency and exhibits all the standard features of the theory of synchronization.

View Article and Find Full Text PDF

The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics.

View Article and Find Full Text PDF