Microalgae are a renewable and promising biomass for large-scale biofuel, food and nutrient production. However, their efficient exploitation depends on our knowledge of the cell wall composition and organization as it can limit access to high-value molecules. Here we provide an atomic-level model of the non-crystalline and water-insoluble glycoprotein-rich cell wall of Chlamydomonas reinhardtii.
View Article and Find Full Text PDFNature is rich with examples of highly specialized biological materials produced by organisms for functions, including defense, hunting, and protection. Along these lines, velvet worms (Onychophora) expel a protein-based slime used for hunting and defense that upon shearing and dehydration forms fibers as stiff as thermoplastics. These fibers can dissolve back into their precursor proteins in water, after which they can be drawn into new fibers, providing biological inspiration to design recyclable materials.
View Article and Find Full Text PDFFor prey capture and defense, velvet worms eject an adhesive slime which has been established as a model system for recyclable complex liquids. Triggered by mechanical agitation, the liquid bio-adhesive rapidly transitions into solid fibers. In order to understand this mechanoresponsive behavior, here, the nanostructural organization of slime components are studied using small-angle scattering with neutrons and X-rays.
View Article and Find Full Text PDFExtracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs.
View Article and Find Full Text PDFMicroalgae are photosynthetic organisms widely distributed in nature and serve as a sustainable source of bioproducts. Their carbohydrate components are also promising candidates for bioenergy production and bioremediation, but the structural characterization of these heterogeneous polymers in cells remains a formidable problem. Here we present a widely applicable protocol for identifying and quantifying the glycan content using magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy, with validation from glycosyl linkage and composition analysis deduced from mass-spectrometry (MS).
View Article and Find Full Text PDFPassivation of carbon dots via heteroatom doping has been shown to enhance their optical properties and tune their fluorescence signature. Additionally, the incorporation of polymeric precursors in carbon dot synthesis has gained considerable interest with benefits to biological applications namely bioimaging, drug delivery and sensing, among others. In order to combine the desirable attributes of both, fluorescence enhancement and increased biocompatibility, polymers composed of high aromaticity and nitrogen content can be used as efficient carbon dot passivating agents.
View Article and Find Full Text PDFStarch is the most abundant energy storage molecule in plants and is an essential part of the human diet. This glucose polymer is composed of amorphous and crystalline domains in different forms (A and B types) with specific physicochemical properties that determine its bioavailability for an organism, as well as its value in the food industry. Using two-dimensional (2D) high resolution solid-state nuclear magnetic resonance (SS-NMR) on C-labelled starches that were obtained from microalgae, we established a complete and unambiguous assignment for starch and its constituents (amylopectin and amylose) in the two crystalline forms and in the amorphous state.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) may act by targeting the lipid membranes and disrupting the bilayer structure. In this study, three AMPs from the skin of Australian tree frogs, aurein 1.2, maculatin 1.
View Article and Find Full Text PDF