Publications by authors named "Alexandre Pery"

Before plant protection product (PPP) marketing authorization, a risk assessment for nontarget soil organisms (e.g., earthworms) is required as part of Regulation (EC) No.

View Article and Find Full Text PDF

The representativeness of laboratory studies of the fate of pesticides in soil in field conditions is questionable. This study aimed at comparing the dissipation and bioavailability to earthworms of two fungicides, dimoxystrobin (DMX) and epoxiconazole (EPX), over 12 months under laboratory and field conditions. In both approaches, the fungicides were applied to the same loamy soil as a formulated mixture at several concentrations.

View Article and Find Full Text PDF

Recent EFSA (European Food Safety Authority) reports highlighted that the ecological risk assessment of pesticides needed to go further by taking more into account the impacts of chemicals on biodiversity under field conditions. We assessed the effects of two commercial formulations of fungicides separately and in mixture, i.e.

View Article and Find Full Text PDF

The pesticide risk assessment for earthworms is currently performed using standardized tests, the model species Eisenia fetida, and the analyses of the data obtained are performed with ad hoc statistical tools. We assessed the impact of two fungicides on the entire growth pattern of the earthworm species Aporrectodea caliginosa, which is highly representative of agricultural fields. Individuals of three different ages (from hatching to 56 days old) were exposed to Cuprafor micro® (copper oxychloride) and Swing® Gold (dimoxystrobin and epoxiconazole).

View Article and Find Full Text PDF

Earthworms act synergistically with microorganisms in soils. They are ecosystem engineers involved in soil organic matter degradation and nutrient cycling, leading to the modulation of resource availability for all soil organisms. Using a soil microcosm approach, we aimed to assess the influence of the earthworm on the response of soil microbial activities against two fungicides, i.

View Article and Find Full Text PDF

The use of pesticides in agroecosystems can have negative effects on earthworms, which play key roles in soil functioning such as organic matter decomposition. The aim of this study was to assess the effects of two fungicides (Cuprafor micro, composed of copper oxychloride, and Swing Gold, composed of epoxiconazole (EPX) and dimoxystrobin (DMX)) on earthworm reproduction by exposing adults and cocoons. First, adult Aporrectodea caliginosa individuals were exposed for 28 days to 3.

View Article and Find Full Text PDF

Ecotoxicological tests with earthworms are widely used and are mandatory for the risk assessment of pesticides prior to registration and commercial use. The current model species for standardized tests is Eisenia fetida or Eisenia andrei. However, these species are absent from agricultural soils and often less sensitive to pesticides than other earthworm species found in mineral soils.

View Article and Find Full Text PDF

The risk assessment of pesticides on soil fauna is an issue to protect agroecosystem sustainability. Enchytraeids are recognized as relevant soil bioindicators of chemical stress in agroecosystems. In laboratory, the reproduction test was found to be sensitive to reveal chemical impacts on enchytraeids.

View Article and Find Full Text PDF

Because of the wide use of pesticides in agriculture, there is still a need of higher-tier field studies to assess ecotoxicological effects of commercial formulations on a wider variety of non-target soil organisms such as soil annelids. We here tested the effects of different concentrations of two fungicide formulations, i.e.

View Article and Find Full Text PDF

The aims of this study were to determine depuration rates for a range of per- and polyfluoroalkyl substances (PFASs) using Chironomus riparius, and to test a concentration-dependency hypothesis for the long-chain perfluorotridecanoic acid (PFTrDA) for this species. Midge larvae were exposed to field sediments collected downstream of a fluorotelomer plant, and to the same sediment spiked with PFTrDA. Elimination kinetics results indicated complete elimination of all PFASs by chironomids after 42h.

View Article and Find Full Text PDF

The use of pesticides in crop fields may have negative effects on soil Oligochaeta Annelida, i.e., earthworms and enchytraeids, and thus affect soil quality.

View Article and Find Full Text PDF

The European Union's ban on animal testing for cosmetic ingredients and products has generated a strong momentum for the development of in silico and in vitro alternative methods. One of the focus of the COSMOS project was ab initio prediction of kinetics and toxic effects through multiscale pharmacokinetic modeling and in vitro data integration. In our experience, mathematical or computer modeling and in vitro experiments are complementary.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) act on the endocrine system through multiple mechanisms of action, among them interaction with estrogen receptors (ERs) is a well-identified key event in the initiation of adverse outcomes. As the most commonly used estrogen screening assays are either yeast- or human-cell based systems, the question of their (eco)toxicological relevance when assessing risks for aquatic species can be raised. The present study addresses the use of zebrafish (zf) derived reporter gene assays, both in vitro (i.

View Article and Find Full Text PDF

Benzophenone-2 (BP2) is widely used as a UV screen in both industrial products and cosmetic formulations, where it is frequently found associated with fragrance compounds, such as isoeugenol and coumarin. BP2 is now recognized as an endocrine disruptor, but to date, no information has been reported on its fate in humans. The intrinsic clearance (Clint) and metabolic interactions of BP2 were explored using cryopreserved human hepatocytes in primary cultures.

View Article and Find Full Text PDF

Assessing the evolutionary responses of long-term exposed populations requires multigeneration ecotoxicity tests. However, the analysis of the data from these tests is not straightforward. Mechanistic models allow the in-depth analysis of the variation of physiological traits over many generations, by quantifying the trend of the physiological and toxicological parameters of the model.

View Article and Find Full Text PDF

The ecotoxic potential of seven Moselle river watershed sediments was assessed with a battery of bioassays comprised of rapid phototrophic [LuminoTox solid phase (L-SPA) and elutriate (L-ELU) assays] and bacterial [Microtox solid phase assay (M-SPA)] exposure tests, as well as with two micro-invertebrate solid phase tests conducted with (lethal and sublethal effects solid phase assay, H-SPA and H-SPA) and . Measured effects of sediments and their elutriates were varied and reflected responses that were ecotoxicity test-, endpoint- and site-dependent, suggesting some degree of risk toward benthic and water column organisms, respectively, at specific sites. Correlation analysis demonstrated that L-SPA and M-SPA ecotoxicity responses were significantly linked with the Hydra H-SPA assay, indicating their ability to predict ecotoxicity towards an invertebrate taxonomic group representing secondary consumers.

View Article and Find Full Text PDF

Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models.

View Article and Find Full Text PDF

Titanium dioxide (TiO2) nanoparticles are used in many applications. Due to their small size, easy body penetration and toxicological adverse effects have been suspected. Numerous studies have tried to characterize TiO2 translocation after oral, dermal or respiratory exposure.

View Article and Find Full Text PDF

The ubiquitous free-living nematode Caenorhabditis elegans is a powerful animal model for measuring the evolutionary effects of pollutants which is increasingly used in (eco) toxicological studies. Indeed, toxicity tests with this nematode can provide in a few days data on the whole life cycle. These data can be analysed with mathematical tools such as toxicokinetic-toxicodynamic modelling approaches.

View Article and Find Full Text PDF

Zebrafish (Danio rerio) is a widely used model for toxicological studies, in particular those related to investigations on endocrine disruption. The development and regulatory use of in vivo and in vitro tests based on this species can be enhanced by toxicokinetic modeling. For this reason, we propose a physiologically based toxicokinetic (PBTK) model for zebrafish describing the uptake and disposition of organic chemicals.

View Article and Find Full Text PDF

Bisphenol A (BPA) is commonly used by manufacturers and can be found in many aquatic ecosystems. Data relative to BPA ecotoxicity are only available for studies in laboratory conditions on macro-invertebrates and fish. There is thus a lack of information for other trophic levels such as macrophytes.

View Article and Find Full Text PDF

A mathematical model to distinguish mature female and male three-spined sticklebacks Gasterosteus aculeatus L. 1758 is proposed. This method is based on sexual dimorphism in the head morphology.

View Article and Find Full Text PDF

The assessment of toxic effects at biologically and ecologically relevant scales is an important challenge in ecosystem protection. Indeed, stressors may impact populations at much longer term than the usual timescale of toxicity tests. It is therefore important to study the evolutionary response of a population under chronic stress.

View Article and Find Full Text PDF

In the present legislations, the use of methods alternative to animal testing is explicitly encouraged, to use animal testing only 'as a last resort' or to ban it. The use of alternative methods to replace kinetics or repeated dose in vivo tests is a challenging issue. We propose here a strategy based on in vitro tests and QSAR (Quantitative Structure Activity Relationship) models to calibrate a dose-response model predicting hepatotoxicity.

View Article and Find Full Text PDF

Species sensitivity distributions (SSDs) developed from individual and population endpoints were compared based on simulations and a case study. The simulations were performed with five invertebrate species accounting for the diversity of benthic macroinvertebrate communities in large European lowland rivers and for five benthic invertebrates used as laboratory species. Population growth rate 10% effective concentration (EC10) values were, in most of the simulations, higher than the lowest of the EC10 values at the individual level.

View Article and Find Full Text PDF