Publications by authors named "Alexandre Pachoud"

High-k dielectric oxides are supposedly ideal gate-materials for ultra-high doping in graphene and other 2D-crystals. Here, we report a temperature-dependent electronic transport study on chemical vapor deposited-graphene gated with SrTiO₃ (STO) thin film substrate. At carrier densities away from charge neutrality point the temperature-dependent resistivity of our graphene samples on both STO and SiO₂/Si substrates show metallic behavior with contributions from Coulomb scattering and flexural phonons attributable to the presence of characteristic quasi-periodic nano-ripple arrays.

View Article and Find Full Text PDF

Graphene charge carriers behave as massless Dirac fermions, opening the exciting possibility to observe long-range virtual tunneling of electrons in a solid. In granular metals, electron hops arising from series of virtual transitions are predicted to yield observable currents at low-enough temperatures, but to date experimental evidence is lacking. We report on electron transport in granular graphene films self-assembled by hydrogenation of suspended graphene.

View Article and Find Full Text PDF

The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 μm and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain.

View Article and Find Full Text PDF