Publications by authors named "Alexandre P dos Santos"

We introduce an efficient method for simulating Coulomb systems confined by conducting planar surfaces. The new approach is suitable for both coarse-grained models and all-atom simulations of ionic liquids between polarizable metal electrodes. To demonstrate its efficiency, we use the new method to study the differential capacitance of an ionic liquid.

View Article and Find Full Text PDF

Understanding acids and bases at interfaces is relevant for a range of applications from environmental chemistry to energy storage. We present combined ab initio and force-field molecular dynamics simulations of hydrochloric acid and sodium hydroxide highly concentrated electrolytes at the interface with air and graphene. In agreement with surface tension measurements at the air-water interface, we find that HCl presents an ionic surface excess, while NaOH displays an ionic surface depletion, for both interfaces.

View Article and Find Full Text PDF

Dielectric interfaces are crucial to the behavior of charged membranes, from graphene to synthetic and biological lipid bilayers. Understanding electrolyte behavior near these interfaces remains a challenge, especially in the case of rough dielectric surfaces. A lack of analytical solutions consigns this problem to numerical treatments.

View Article and Find Full Text PDF

In many practical applications, ions are the primary charge carrier and must move through either semipermeable membranes or through pores, which mimic ion channels in biological systems. In analogy to electronic devices, the "iontronic" ones use electric fields to induce the charge motion. However, unlike the electrons that move through a conductor, motion of ions is usually associated with simultaneous solvent flow.

View Article and Find Full Text PDF

In this work, we perform molecular dynamics simulations to study a spherical polyelectrolyte brush. We explore the effects of surface polarization and electrostatic coupling on brush size and distribution of counterions. The method of image charges is considered to take into account surface polarization, considering a metallic, an unpolarizable, and a dielectric nano-core.

View Article and Find Full Text PDF

We study the reversal of electroosmotic flow in charged cylindrical nanopores containing multivalent electrolyte. Dissipative particle dynamics is used to simulate the hydrodynamics of the electroosmotic flow. The electrostatic interactions are treated using 3D Ewald summation, corrected for a pseudo-one-dimensional geometry of the pore.

View Article and Find Full Text PDF

We present a simulation method to study electroosmotic flow in charged nanopores with dielectric contrast between their interior and the surrounding medium. To perform simulations, we separate the electrostatic energy into the direct Coulomb and the polarization contributions. The polarization part is obtained using periodic Green functions and can be expressed as a sum of fast converging modified Bessel functions.

View Article and Find Full Text PDF

Correction for 'Electroosmosis as a probe for electrostatic correlations' by Ivan Palaia et al., Soft Matter, 2020, 16, 10688-10696, DOI: 10.1039/D0SM01523G.

View Article and Find Full Text PDF

In this work, the effects of polarization of confining charged planar dielectric surfaces on induced electroosmotic flow are investigated. To this end, we use dissipative particle dynamics to model solvent and ionic particles together with a modified Ewald sum method to model electrostatic interactions and surfaces polarization. A relevant difference between counterions number density profiles, velocity profiles, and volumetric flow rates obtained with and without surface polarization for moderate and high electrostatic coupling parameters is observed.

View Article and Find Full Text PDF

We present a theory which allows us to calculate the interaction potential between charge-regulated metal nanoparticles inside an acid-electrolyte solution. The approach is based on the recently introduced model of charge regulation which permits us to explicitly-within a specific microscopic model-relate the bulk association constant of a weak acid to the surface association constant for the same weak acid adsorption sites. When considering metal nanoparticles we explicitly account for the effect of the induced surface charge in the conducting core.

View Article and Find Full Text PDF

We study the role of ionic correlations on the electroosmotic flow in planar double-slit channels, without salt. We propose an analytical theory, based on recent advances in the understanding of correlated systems. We compare the theory with mean-field results and validate it by means of dissipative particle dynamics simulations.

View Article and Find Full Text PDF

We present a new method for simulating ungrounded charged metal slabs inside an electrolyte solution. The ions are free to move between the interior and exterior regions of the slab-electrolyte system. This leads to polarization of both sides of each slab, with a distinct surface charge induced on each surface.

View Article and Find Full Text PDF

Solvent-implicit Monte Carlo (MC) simulations and mean-field theory are used to predict activity coefficients and excess interfacial tensions for NaF, NaCl, NaI, KF, KCl, and KI solutions in good agreement with experimental data over the entire experimentally available concentration range. The effective ionic diameters of the solvent-implicit simulation model are obtained by fits to experimental activity coefficient data. The experimental activity coefficients at high salt concentrations are only reproduced if the ion-specific concentration-dependent decrement of the dielectric constant is included.

View Article and Find Full Text PDF

Fungal infections are on the rise, since the imunocompromised population is increasing due to AIDS/HIV, organ transplant and chemotherapy. Many environmental and pathogenic fungi are able to accomplish melanin biosynthesis as a virulence factor to promote host invasion. Melanized cells are more resistant to radiation, oxidative and osmotic stresses; also melanin confers an advantage in vivo, since melanized cells are more resistant to phagocytic engulfment and oxidative stress caused by the host defense cells and by some antifungal drugs, such as fluconazole (FCZ) and amphotericin B (AmB).

View Article and Find Full Text PDF

We investigate the adsorption of neutral polyampholytes on charged nanopatterned surfaces. The surfaces have charged domains but are overall neutral. To perform efficient simulations, we use an approach which combines the explicit form of the interaction potential between the polyampholyte monomers and the surface with a 3d Ewald summation method.

View Article and Find Full Text PDF
Article Synopsis
  • The increasing use of rubber has caused significant environmental issues due to its long decomposition time, sparking interest in microbial rubber degradation through bioremediation.
  • Research on the G. paraffinivorans MTZ041 isolate revealed the presence of the lcp gene, which helps initiate the breakdown of both natural and synthetic rubber.
  • Growth studies over 11 weeks showed that MTZ041 could thrive on rubber as a carbon source, highlighting its potential role in addressing rubber waste challenges through bioremediation.
View Article and Find Full Text PDF

We calculate the force between two spherical metal nanoparticles of charge Q_{1} and Q_{2} in a dilute 1∶1 electrolyte solution. Numerically solving the nonlinear Poisson-Boltzmann equation, we find that metal nanoparticles with the same sign of charge can attract one another. This is fundamentally different from what is found for like-charged, nonpolarizable, colloidal particles, the two-body interaction potential for which is always repulsive inside a dilute 1∶1 electrolyte.

View Article and Find Full Text PDF

We perform atomistic simulations of nanometer-separated charged surfaces in the presence of monovalent counterions at fixed water chemical potential. The counterion density profiles are well described by a modified Poisson-Boltzmann (MPB) approach that accounts for nonelectrostatic ion-surface interactions, while the effects of smeared-out surface-charge distributions and dielectric profiles are found to be relatively unimportant. The simulated surface interactions are for weakly charged surfaces well described by the additive contributions of hydration and MPB repulsions, but already for a moderate surface charge density of σ = -0.

View Article and Find Full Text PDF

We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble.

View Article and Find Full Text PDF

We present a theory which allows us to calculate the effective charge and zeta potential of oil droplets in microemulsions containing Hofmeister salts. A modified Poisson-Boltzmann equation is used to account for the surface and ion polarizations and hydrophobic and dispersion interactions. The ions are classified as kosmotropes and chaotropes according to their Jones-Dole viscosity B coefficient.

View Article and Find Full Text PDF

Using Monte Carlo simulations in conjunction with periodic Green's function methods, we study the interaction between planar charged surfaces with point-like counterions only in the presence of dielectric boundaries. Based on the calculated pressure profiles, we derive phase diagrams featuring correlation-induced negative pressure and thus attraction between the plates for large coupling parameters, i.e.

View Article and Find Full Text PDF

We present a method to efficiently simulate nano-patterned charged surfaces inside an electrolyte solution. Simulations are performed in the grand canonical ensemble and are used to calculate the force between surfaces with various charge patterns. The electric field produced by the surfaces is calculated analytically and is used as an external potential.

View Article and Find Full Text PDF

We present an efficient approach for simulating Coulomb systems confined by planar polarizable surfaces. The method is based on the solution of the Poisson equation using periodic Green functions. It is shown that the electrostatic energy arising from the surface polarization can be decoupled from the energy due to the direct Coulomb interaction between the ions.

View Article and Find Full Text PDF