The vertebrate 'neural plate border' is a transient territory located at the edge of the neural plate containing precursors for all ectodermal derivatives: the neural plate, neural crest, placodes and epidermis. Elegant functional experiments in a range of vertebrate models have provided an in-depth understanding of gene regulatory interactions within the ectoderm. However, these experiments conducted at tissue level raise seemingly contradictory models for fate allocation of individual cells.
View Article and Find Full Text PDFDuring early vertebrate development, signals from a special region of the embryo, the organizer, can redirect the fate of non-neural ectoderm cells to form a complete, patterned nervous system. This is called neural induction and has generally been imagined as a single signalling event, causing a switch of fate. Here, we undertake a comprehensive analysis, in very fine time course, of the events following exposure of competent ectoderm of the chick to the organizer (the tip of the primitive streak, Hensen's node).
View Article and Find Full Text PDFSharks and rays (elasmobranchs) have the remarkable capacity to continuously regenerate their teeth. The polyphyodont system is considered the ancestral condition of the gnathostome dentition. Despite this shared regenerative ability, sharks and rays exhibit dramatic interspecific variation in their tooth morphology.
View Article and Find Full Text PDFIn recent years, nonclassical models have emerged as mainstays for studies of evolutionary, developmental, and regenerative biology. Genomic advances have promoted the use of alternative taxa for the study of developmental biology, and the shark is one such emerging model vertebrate. Our research utilizes the embryonic shark (Scyliorhinus canicula) to characterize key developmental and regenerative processes that have been overlooked or not possible to study with more classic developmental models.
View Article and Find Full Text PDFVertebrates have a vast array of epithelial appendages, including scales, feathers, and hair. The developmental patterning of these diverse structures can be theoretically explained by Alan Turing's reaction-diffusion system. However, the role of this system in epithelial appendage patterning of early diverging lineages (compared to tetrapods), such as the cartilaginous fishes, is poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2017
Vertebrate dentitions are extraordinarily diverse in both morphology and regenerative capacity. The teleost order Tetraodontiformes exhibits an exceptional array of novel dental morphologies, epitomized by constrained beak-like dentitions in several families, i.e.
View Article and Find Full Text PDF