The effects of quenched disorder on a single and many active run-and-tumble particles are studied in one dimension. For a single particle, we consider both the steady-state distribution and the particle's dynamics subject to disorder in three parameters: a bounded external potential, the particle's speed, and its tumbling rate. We show that in the case of a disordered potential, the behavior is like an equilibrium particle diffusing on a random force landscape, implying a dynamics that is logarithmically slow in time.
View Article and Find Full Text PDFWe study the linear response of interacting active Brownian particles in an external potential to simple shear flow. Using a path integral approach, we derive the linear response of any state observable to initiating shear in terms of correlation functions evaluated in the unperturbed system. For systems and observables which are symmetric under exchange of the x and y coordinates, the response formula can be drastically simplified to a form containing only state variables in the corresponding correlation functions (compared to the generic formula containing also time derivatives).
View Article and Find Full Text PDFFor two canonical examples of driven mesoscopic systems-a harmonically trapped Brownian particle and a quantum dot-we numerically determine the finite-time protocols that optimize the compromise between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we observe a collection of protocols that smoothly trade off between average work and its fluctuations. However, for the quantum dot, we find that as we shift the weight of our optimization objective from average work to work standard deviation, there is an analog of a first-order phase transition in protocol space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence.
View Article and Find Full Text PDFMotility-induced phase separation (MIPS) arises generically in fluids of self-propelled particles when interactions lead to a kinetic slowdown at high densities. Starting from a continuum description of scalar active matter akin to a generalized Cahn-Hilliard equation, we give a general prescription for the mean densities of coexisting phases in flux-free steady states that amounts, at a hydrodynamics scale, to extremizing an effective free energy. We illustrate our approach on two well-known models: self-propelled particles interacting either through a density-dependent propulsion speed or via direct pairwise forces.
View Article and Find Full Text PDFA single nonspherical body placed in an active fluid generates currents via breaking of time-reversal symmetry. We show that, when two or more passive bodies are placed in an active fluid, these currents lead to long-range interactions. Using a multipole expansion, we characterize their leading-order behaviors in terms of single-body properties and show that they decay as a power law with the distance between the bodies, are anisotropic, and do not obey an action-reaction principle.
View Article and Find Full Text PDFWe study, from first principles, the pressure exerted by an active fluid of spherical particles on general boundaries in two dimensions. We show that, despite the nonuniform pressure along curved walls, an equation of state is recovered upon a proper spatial averaging. This holds even in the presence of pairwise interactions between particles or when asymmetric walls induce ratchet currents, which are accompanied by spontaneous shear stresses on the walls.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2015
We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model.
View Article and Find Full Text PDFWe derive a microscopic expression for the mechanical pressure P in a system of spherical active Brownian particles at density ρ. Our exact result relates P, defined as the force per unit area on a bounding wall, to bulk correlation functions evaluated far away from the wall. It shows that (i) P(ρ) is a state function, independent of the particle-wall interaction; (ii) interactions contribute two terms to P, one encoding the slow-down that drives motility-induced phase separation, and the other a direct contribution well known for passive systems; and (iii) P is equal in coexisting phases.
View Article and Find Full Text PDFWe show that the flocking transition in the Vicsek model is best understood as a liquid-gas transition, rather than an order-disorder one. The full phase separation observed in flocking models with Z(2) rotational symmetry is, however, replaced by a microphase separation leading to a smectic arrangement of traveling ordered bands. Remarkably, continuous deterministic descriptions do not account for this difference, which is only recovered at the fluctuating hydrodynamics level.
View Article and Find Full Text PDF