Nucleosides Nucleotides Nucleic Acids
March 2008
Bis-conjugates of hairpin N-methylpyrrole/N-methylimidazole oligocarboxamide minor groove binders (MGB) possessing enhanced affinity and sequence-specificity for dsDNA were synthesized. Two hairpin MGBs were connected by their N-termini via an aminodiacetate linker. The binding of bis-MGB conjugates to the target DNA was studied by gel mobility retardation, footprinting, and circular dichroism; their affinity and binding mode in the DNA minor groove were determined.
View Article and Find Full Text PDFTwo hairpin hexa(N-methylpyrrole)carboxamide DNA minor groove binders (MGB) were linked together via their N-termini in head-to-head orientation. Complex formation between these bis-MGB conjugates and target DNA has been studied using DNase I footprinting, circular dichroism, thermal dissociation, and molecular modeling. DNase I footprint revealed binding of these conjugates to all the sites of 492 b.
View Article and Find Full Text PDFNew conjugates of triplex-forming pyrimidine oligo(2'-O-methylribonucleotides) with one or two 'head-to-head' hairpin oligo(N-methylpyrrole carboxamide) minor-groove binders (MGBs) attached to the terminal phosphate of the oligonucleotides with a oligo(ethylene glycol) linker were synthesized. It was demonstrated that, under appropriate conditions, the conjugates form stable complexes with double-stranded DNA (dsDNA) similarly to triplex-forming oligo(deoxyribonucleotide) (TFO) conjugates containing 5-methylated cytosines. Kinetic and thermodynamic parameters of the complex formation were evaluated by gel-shift assay and thermal denaturation.
View Article and Find Full Text PDFA series of 4 functionalized head-to-head-linked hairpin oligo(N-methylpyrrole) carboxamides with different linkers have been synthesized. Their ability to bind double-stranded DNA and sequence specificity were compared and the apparent Kd values of their DNA complexes were determined. These compounds, particularly those with iminodiacetic linkers, revealed a high affinity for DNA (Kd = 4.
View Article and Find Full Text PDFSynthetic polycarboxamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove when they form hairpin structures with side-by-side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide-linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
May 2004
Synthetic polycarboxamide minor groove binders (MGB) consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove in side-by-side antiparallel or parallel orientation. Two MGB moieties covalently linked to the same terminal phosphate of one DNA strand stabilize DNA duplexes formed by this strand with a complementary one in a sequence-specific manner, similarly to the corresponding mono-conjugated hairpin structures. The series of conjugates with the general formula Oligo-(L-MGB-R)m was synthesized, where m = 1 or 2, L = linker, R = terminal charged or neutral group, MGB = -(Py)n-, -(Im)n- or -[(Py/Im)n-(CH2)3CONH-(Py/Im)n-] and I < n < 5.
View Article and Find Full Text PDF