Phasic variations in dopamine levels are interpreted as a teaching signal reinforcing rewarded behaviors. However, behavior also depends on the motivational, neuromodulatory effect of phasic dopamine. In this study, we reveal a neurodynamical principle that unifies these roles in a recurrent network-based decision architecture embodied through an action-perception loop with the task space, the MAGNet model.
View Article and Find Full Text PDFIndividual animals differ in their traits and preferences, which shape their social interactions, survival, and susceptibility to disease, including addiction. Nicotine use is highly heterogenous and has been linked to the expression of personality traits. Although these relationships are well documented, we have limited understanding of the neurophysiological mechanisms that give rise to distinct behavioral profiles and their connection to nicotine susceptibility.
View Article and Find Full Text PDFHow nicotine acts on developing neurocircuitry in adolescence to promote later addiction vulnerability remains largely unknown, but may hold the key for informing more effective intervention efforts. We found transient nicotine exposure in early adolescent (PND 21-28) male mice was sufficient to produce a marked vulnerability to nicotine in adulthood (PND 60 + ), associated with disrupted functional connectivity in dopaminergic circuits. These mice showed persistent adolescent-like behavioral and physiological responses to nicotine, suggesting that nicotine exposure in adolescence prolongs an immature, imbalanced state in the function of these circuits.
View Article and Find Full Text PDFCholinergic striatal interneurons (ChIs) express the vesicular glutamate transporter 3 (VGLUT3) which allows them to regulate the striatal network with glutamate and acetylcholine (ACh). In addition, VGLUT3-dependent glutamate increases ACh vesicular stores through vesicular synergy. A missense polymorphism, VGLUT3-p.
View Article and Find Full Text PDFNicotine intake is likely to result from a balance between the rewarding and aversive properties of the drug, yet the individual differences in neural activity that control aversion to nicotine and their adaptation during the addiction process remain largely unknown. Using a two-bottle choice experiment, we observed considerable heterogeneity in nicotine-drinking profiles in isogenic adult male mice, with about half of the mice persisting in nicotine consumption even at high concentrations, whereas the other half stopped consuming. We found that nicotine intake was negatively correlated with nicotine-evoked currents in the interpeduncular nucleus (IPN), and that prolonged exposure to nicotine, by weakening this response, decreased aversion to the drug, and hence boosted consumption.
View Article and Find Full Text PDFThe neural mechanisms by which animals initiate goal-directed actions, choose between options, or explore opportunities remain unknown. Here, we develop a spatial gambling task in which mice, to obtain intracranial self-stimulation rewards, self-determine the initiation, direction, vigor, and pace of their actions based on their knowledge of the outcomes. Using electrophysiological recordings, pharmacology, and optogenetics, we identify a sequence of oscillations and firings in the ventral tegmental area (VTA), orbitofrontal cortex (OFC), and prefrontal cortex (PFC) that co-encodes and co-determines self-initiation and choices.
View Article and Find Full Text PDFLong-term exposure to nicotine alters brain circuits and induces profound changes in decision-making strategies, affecting behaviors both related and unrelated to drug seeking and consumption. Using an intracranial self-stimulation reward-based foraging task, we investigated in mice the impact of chronic nicotine on midbrain dopamine neuron activity and its consequence on the trade-off between exploitation and exploration. Model-based and archetypal analysis revealed substantial inter-individual variability in decision-making strategies, with mice passively exposed to nicotine shifting toward a more exploitative profile compared to non-exposed animals.
View Article and Find Full Text PDFNicotine stimulates dopamine (DA) neurons of the ventral tegmental area (VTA) to establish and maintain reinforcement. Nicotine also induces anxiety through an as yet unknown circuitry. We found that nicotine injection drives opposite functional responses of two distinct populations of VTA DA neurons with anatomically segregated projections: it activates neurons that project to the nucleus accumbens (NAc), whereas it inhibits neurons that project to the amygdala nuclei (Amg).
View Article and Find Full Text PDFGlutamate delta (GluD) receptors belong to the ionotropic glutamate receptor family, yet they don't bind glutamate and are considered orphan. Progress in defining the ion channel function of GluDs in neurons has been hindered by a lack of pharmacological tools. Here, we used a chemo-genetic approach to engineer specific and photo-reversible pharmacology in GluD2 receptor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2020
Glutamate is the major excitatory neurotransmitter in the brain, and photochemical release of glutamate (or uncaging) is a chemical technique widely used by biologists to interrogate its physiology. A basic prerequisite of these optical probes is bio-inertness before photolysis. However, all caged glutamates are known to have strong antagonism toward receptors of γ-aminobutyric acid, the major inhibitory transmitter.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFCan decisions be made solely by chance? Can variability be intrinsic to the decision-maker or is it inherited from environmental conditions? To investigate these questions, we designed a deterministic setting in which mice are rewarded for non-repetitive choice sequences, and modeled the experiment using reinforcement learning. We found that mice progressively increased their choice variability. Although an optimal strategy based on sequences learning was theoretically possible and would be more rewarding, animals used a pseudo-random selection which ensures high success rate.
View Article and Find Full Text PDFNeuronal communication involves a multitude of neurotransmitters and an outstanding diversity of receptors and ion channels. Linking the activity of cell surface receptors and ion channels in defined neural circuits to brain states and behaviors has been a key challenge in neuroscience, since cell targeting is not possible with traditional neuropharmacology. We review here recent technologies that enable the effect of drugs to be restricted to specific cell types, thereby allowing acute manipulation of the brain's own proteins with circuit specificity.
View Article and Find Full Text PDFLight-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors.
View Article and Find Full Text PDFTobacco addiction is a chronic and relapsing disorder with an important genetic component that represents a major public health issue. Meta-analysis of large-scale human genome-wide association studies (GWASs) identified a frequent non-synonymous SNP in the gene coding for the α5 subunit of nicotinic acetylcholine receptors (α5SNP), which significantly increases the risk for tobacco dependence and delays smoking cessation. To dissect the neuronal mechanisms underlying the vulnerability to nicotine addiction in carriers of the α5SNP, we created rats expressing this polymorphism using zinc finger nuclease technology and evaluated their behavior under the intravenous nicotine-self-administration paradigm.
View Article and Find Full Text PDFDopamine (DA) neurons of the ventral tegmental area (VTA) integrate cholinergic inputs to regulate key functions such as motivation and goal-directed behaviors. Yet the temporal dynamic range and mechanism of action of acetylcholine (ACh) on the modulation of VTA circuits and reward-related behaviors are not known. Here, we used a chemical-genetic approach for rapid and precise optical manipulation of nicotinic neurotransmission in VTA neurons in living mice.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels widely expressed in the central nervous system and the periphery. They play an important modulatory role in learning, memory and attention, and have been implicated in various diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia and addiction. These receptors are activated by the endogenous neurotransmitter acetylcholine, or by nicotine, the alkaloid found in tobacco leaves.
View Article and Find Full Text PDFAnxiolytic drugs are widely used in the elderly, a population particularly sensitive to stress. Stress, aging and anxiolytics all affect low-frequency oscillations in the hippocampus and prefrontal cortex (PFC) independently, but the interactions between these factors remain unclear. Here, we compared the effects of stress (elevated platform, EP) and anxiolytics (diazepam, DZP) on extracellular field potentials (EFP) in the PFC, parietal cortex and hippocampus (dorsal and ventral parts) of adult (8 months) and aged (18 months) Wistar rats.
View Article and Find Full Text PDFBackground And Purpose: The photo-isomerizable local anaesthetic, quaternary ammonium-azobenzene-quaternary ammonium (QAQ), provides rapid, optical control over pain signalling without involving genetic modification. In darkness or in green light, trans-QAQ blocks voltage-gated K and Na channels and silences action potentials in pain-sensing neurons. Upon photo-isomerization to cis with near UV light, QAQ blockade is rapidly relieved, restoring neuronal activity.
View Article and Find Full Text PDFMethods Mol Biol
December 2016
In neurons, ligand-gated ion channels decode the chemical signal of neurotransmitters into an electric response, resulting in a transient excitation or inhibition. Neurotransmitters act on multiple receptor types and subtypes, with spatially and temporally precise patterns. Hence, understanding the neural function of a given receptor requires methods for its targeted, rapid activation/inactivation in defined brain regions.
View Article and Find Full Text PDFCholinergic neurotransmission affects decision-making, notably through the modulation of perceptual processing in the cortex. In addition, acetylcholine acts on value-based decisions through as yet unknown mechanisms. We found that nicotinic acetylcholine receptors (nAChRs) expressed in the ventral tegmental area (VTA) are involved in the translation of expected uncertainty into motivational value.
View Article and Find Full Text PDFOptogenetics has become an emerging technique for neuroscience investigations owing to the great spatiotemporal precision and the target selectivity it provides. Here we extend the optogenetic strategy to GABAA receptors (GABAARs), the major mediators of inhibitory neurotransmission in the brain. We generated a light-regulated GABAA receptor (LiGABAR) by conjugating a photoswitchable tethered ligand (PTL) onto a mutant receptor containing the cysteine-substituted α1-subunit.
View Article and Find Full Text PDFThe optical neuroscience revolution is transforming how we study neural circuits. By providing a precise way to manipulate endogenous neuronal signaling proteins, it also has the potential to transform our understanding of molecular neuroscience. Recent advances in chemical biology have produced light-sensitive compounds that photoregulate a wide variety of proteins underlying signaling between and within neurons.
View Article and Find Full Text PDF