Publications by authors named "Alexandre Mezghrani"

Interactomics is bringing a deluge of data regarding protein-protein interactions (PPIs) which are involved in various molecular processes in all types of cells. However, this information does not easily translate into direct and precise molecular interfaces. This limits our understanding of each interaction network and prevents their efficient modulation.

View Article and Find Full Text PDF

TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis.

View Article and Find Full Text PDF

The aim of this study was to detect misfolded Cu/Zn SOD1 as a potential biomarker for amyotrophic lateral sclerosis (ALS). Two ultrasensitive immunodetection assays were developed for the quantification of total and misfolded SOD1. The detection of total and misfolded SOD1 was possible in human serum and cerebrospinal fluid.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer's and Parkinson's disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis.

View Article and Find Full Text PDF

Neuronal Ca entry elicited by electrical activity contributes to information coding via activation of K and Cl channels. While Ca-dependent K channels have been extensively studied, the molecular identity and role of Ca-activated Cl channels (CaCCs) remain unclear. Here, we demonstrate that TMEM16F governs a Ca-activated Cl conductance in spinal motoneurons.

View Article and Find Full Text PDF

Peripheral neuropathic pain (PNP) is a debilitating and intractable chronic disease, for which sensitization of somatosensory neurons present in dorsal root ganglia that project to the dorsal spinal cord is a key physiopathological process. Here, we show that hematopoietic cells present at the nerve injury site express the cytokine FL, the ligand of fms-like tyrosine kinase 3 receptor (FLT3). FLT3 activation by intra-sciatic nerve injection of FL is sufficient to produce pain hypersensitivity, activate PNP-associated gene expression and generate short-term and long-term sensitization of sensory neurons.

View Article and Find Full Text PDF

Episodic Ataxia type 2 (EA2) is an autosomal dominant neuronal disorder linked to mutations in the Ca2.1 subunit of P/Q-type calcium channels. In vitro studies have established that EA2 mutations induce loss of channel activity and that EA2 mutants can exert a dominant negative effect, suppressing normal Ca2.

View Article and Find Full Text PDF

Episodic ataxia type-2 (EA2) is a dominantly inherited human neurological disorder caused by loss of function mutations in the CACNA1A gene, which encodes the CaV2.1 subunit of P/Q-type voltage-gated calcium channels. It remains however unknown whether the deficit of cerebellar CaV2.

View Article and Find Full Text PDF

To maintain proteostasis in the endoplasmic reticulum (ER), terminally misfolded secretory proteins must be recognized, partially unfolded, and dislocated to the cytosol for proteasomal destruction, in a complex process called ER-associated degradation (ERAD). Dislocation implies reduction of inter-chain disulphide bonds. When in its reduced form, protein disulphide isomerase (PDI) can act not only as a reductase but also as an unfoldase, preparing substrates for dislocation.

View Article and Find Full Text PDF

A previously unsuspected, considerable proportion of newly synthesized polypeptides are hydrolyzed rapidly by proteasomes, possibly competing with endogenous substrates and altering proteostasis. In view of the anti-cancer effects of PIs, we set out to achieve a quantitative assessment of proteasome workload in cells hallmarked by different PI sensitivity, namely, a panel of MM cells, and in a dynamic model of plasma cell differentiation, a process that confers exquisite PI sensitivity. Our results suggest that protein synthesis is a key determinant of proteasomal proteolytic burden and PI sensitivity.

View Article and Find Full Text PDF

Ion channels are critical components of cell excitability involved in many physiological processes, including hormone secretion, and are thought be targets of choice in a pathological context. In the present paper, we summarize and discuss our recent findings on a four domain cation channel named NALCN which has been previously described as mediating a TTX-resistant leak sodium current in neurons. We recently reported that NALCN is also expressed in rodent islets of Langerhans as well as in the mouse MIN6 pancreatic β-cell line.

View Article and Find Full Text PDF

Mutations located in the human genes encoding voltage-gated calcium channels are responsible for a variety of diseases referred to as calcium channelopathies, including familial hemiplegic migraine, episodic ataxia type 2, spinocerebellar ataxia type 6, childhood absence epilepsy and autism spectrum disorder, all of which are rare inherited forms of common neurological disorders. The genetic basis of these calcium channelopathies provides a unique opportunity to investigate their underlying mechanisms from the molecular to whole-organism levels. Studies of channelopathies provide insight on the relationships between channel structure and function, and reveal diverse and unexpected physiological roles for the channels.

View Article and Find Full Text PDF

We have investigated the heterodimerization of ORL1 receptors and classical members of the opioid receptor family. All three classes of opioid receptors could be co-immunoprecipitated with ORL1 receptors from both transfected tsA-201 cell lysate and rat dorsal root ganglia lysate, suggesting that these receptors can form heterodimers. Consistent with this hypothesis, in cells expressing either one of the opioid receptors together with ORL1, prolonged ORL1 receptor activation via nociceptin application resulted in internalization of the opioid receptors.

View Article and Find Full Text PDF

A previously uncharacterized putative ion channel, NALCN (sodium leak channel, non-selective), has been recently shown to be responsible for the tetrodotoxin (TTX)-resistant sodium leak current implicated in the regulation of neuronal excitability. Here, we show that NALCN encodes a current that is activated by M3 muscarinic receptors (M3R) in a pancreatic beta-cell line. This current is primarily permeant to sodium ions, independent of intracellular calcium stores and G proteins but dependent on Src activation, and resistant to TTX.

View Article and Find Full Text PDF

Proteasome inhibitors (PIs) are effective against multiple myeloma (MM), but the mechanisms of action and bases of individual susceptibility remain unclear. Recent work linked PI sensitivity to protein synthesis and proteasome activity, raising the question whether different levels of proteasome expression and workload underlie PI sensitivity in MM cells (MMCs). Exploiting human MM lines characterized by differential PI sensitivity, we report that highly sensitive MMCs express lower proteasome levels and higher proteasomal workload than relatively PI-resistant MMCs, resulting in the accumulation of polyubiquitinated proteins at the expense of free ubiquitin (proteasome stress).

View Article and Find Full Text PDF

Channelopathies are often linked to defective protein folding and trafficking. Among them, the calcium channelopathy episodic ataxia type-2 (EA2) is an autosomal dominant disorder related to mutations in the pore-forming Ca(v)2.1 subunit of P/Q-type calcium channels.

View Article and Find Full Text PDF

Modulation of low voltage-activated Ca(V)3 T-type calcium channels remains poorly characterized compared with high voltage-activated Ca(V)1 and Ca(V)2 calcium channels. Notably, it is yet unresolved whether Ca(V)3 channels are modulated by protein kinases in mammalian cells. In this study, we demonstrate that protein kinase A (PKA) and PKC (but not PKG) activation induces a potent increase in Ca(V)3.

View Article and Find Full Text PDF
Article Synopsis
  • Calcium currents through T-type channels play a key role in burst firing in thalamic neurons, and their overactivity may be linked to absence epilepsy due to thalamocortical dysrhythmia.
  • Specific genetic variations in the CACNA1H gene, which encodes the Ca(v)3.2 channel, are associated with childhood absence epilepsy in a Chinese population, suggesting that these variations could influence channel activity.
  • Research indicates that certain polymorphisms in the I-II loop of the Ca(v)3.2 channel enhance its surface expression, suggesting that changes in the I-II loop could affect channel behavior and potentially contribute to overactive channels and absence epilepsy.
View Article and Find Full Text PDF

Voltage-gated calcium channels (VGCCs) mediate calcium entry into excitable cells in response to membrane depolarization. During the past decade, our understanding of the gating and functions of VGCCs has been illuminated by the analysis of mutations linked to a heterogeneous group of genetic diseases called "calcium channelopathies". Calcium channelopathies include muscular, neurological, cardiac and vision syndromes.

View Article and Find Full Text PDF

After few days of intense immunoglobulin (Ig) secretion, most plasma cells undergo apoptosis, thus ending the humoral immune response. We asked whether intrinsic factors link plasma cell lifespan to Ig secretion. Here we show that in the late phases of plasmacytic differentiation, when antibody production becomes maximal, proteasomal activity decreases.

View Article and Find Full Text PDF

The inhibition of N-type calcium channels by opioid receptor like receptor 1 (ORL1) is a key mechanism for controlling the transmission of nociceptive signals. We recently reported that signaling complexes consisting of ORL1 receptors and N-type channels mediate a tonic inhibition of calcium entry. Here we show that prolonged ( approximately 30 min) exposure of ORL1 receptors to their agonist nociceptin triggers an internalization of these signaling complexes into vesicular compartments.

View Article and Find Full Text PDF

Formation of disulfide bonds, an essential step for the maturation and exit of secretory proteins from the endoplasmic reticulum (ER), is controlled by specific ER-resident enzymes. A pivotal element in this process is Ero1alpha, an oxidoreductin that lacks known ER retention motifs. Here we show that ERp44 mediates Ero1alpha ER localization through the formation of reversible mixed disulfides.

View Article and Find Full Text PDF

B lymphocytes are small cells that express antigen receptors and secrete little if any IgM. Upon encounter with antigen, they differentiate into short-lived plasma cells, which secrete large amounts of polymeric IgM. Plasma cell differentiation entails a massive development of the endoplasmic reticulum to sustain high levels of Ig production.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: