Publications by authors named "Alexandre Mayran"

Article Synopsis
  • Mammalian tail length is influenced by genetic factors, particularly genes that control body axis termination, and their activation timing may affect overall body length.* -
  • The research identified that a large DNA segment between two specific genes contains numerous CTCF sites, which may isolate one gene from others, delaying its impact on tail length.* -
  • Experiments showed that deleting this spacer DNA led to shorter tails and other defects, but these were reversible by inactivating the gene in the spacer, highlighting the role of CTCF sites in modulating gene activation timing.*
View Article and Find Full Text PDF

During development, Hox genes are temporally activated according to their relative positions on their clusters, contributing to the proper identities of structures along the rostrocaudal axis. To understand the mechanism underlying this Hox timer, we used mouse embryonic stem cell-derived stembryos. Following Wnt signaling, the process involves transcriptional initiation at the anterior part of the cluster and a concomitant loading of cohesin complexes enriched on the transcribed DNA segments, that is, with an asymmetric distribution favoring the anterior part of the cluster.

View Article and Find Full Text PDF

Gastruloids are 3D structures generated from pluripotent stem cells recapitulating fundamental principles of embryonic pattern formation. Using single-cell genomic analysis, we provide a resource mapping cell states and types during gastruloid development and compare them with the in vivo embryo. We developed a high-throughput handling and imaging pipeline to spatially monitor symmetry breaking during gastruloid development and report an early spatial variability in pluripotency determining a binary response to Wnt activation.

View Article and Find Full Text PDF

The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected most of the world in a profound way. As an indirect consequence, the general public has been put into direct contact with the research process, almost in real time. Justifiably, a lot of this focus has been targeted toward research directly linked to coronavirus disease 2019 (COVID-19).

View Article and Find Full Text PDF

The pioneer transcription factor Pax7 contains two DNA binding domains (DBD), a paired and a homeo domain. Previous work on Pax7 and the related Pax3 showed that each DBD binds a cognate DNA sequence, thus defining two targets of binding and possibly modalities of action. Genomic targets of Pax7 pioneer action leading to chromatin opening are enriched for composite DNA target sites containing juxtaposed sites for both paired and homeo domains.

View Article and Find Full Text PDF

Hox genes encode transcription factors (TFs) that establish morphological diversity in the developing embryo. The similar DNA-binding motifs of the various HOX TFs contrast with the wide-range of HOX-dependent genetic programs. The influence of the chromatin context on HOX binding specificity remains elusive.

View Article and Find Full Text PDF

Down syndrome (DS), caused by the triplication of human chromosome 21, leads to significant alterations in brain development and is a major genetic cause of intellectual disability. While much is known about changes to neurons in DS, the effects of trisomy 21 on non-neuronal cells such as astrocytes are poorly understood. Astrocytes are critical for brain development and function, and their alteration may contribute to DS pathophysiology.

View Article and Find Full Text PDF

Translation is a basic cellular process and its capacity is adapted to cell function. In particular, secretory cells achieve high protein synthesis levels without triggering the protein stress response. It is unknown how and when translation capacity is increased during differentiation.

View Article and Find Full Text PDF

Pioneer transcription factors are characterized by having the unique property of enabling the opening of closed chromatin sites, for implementation of cell fates. We previously found that the pioneer Pax7 specifies melanotrope cells through deployment of an enhancer repertoire, which allows binding of Tpit, a nonpioneer factor that determines the related lineages of melanotropes and corticotropes. Here, we investigate the relation between these two factors in the pioneer mechanism.

View Article and Find Full Text PDF

Preventing inappropriate gene expression in time and space is as fundamental as triggering the activation of tissue- or cell-type-specific factors at the correct developmental stage and in the correct cells. Here, we study the impact of Polycomb repressive complex 2 (PRC2) function on HoxA gene regulation. We analyze chromatin conformation of the HoxA cluster and its regulatory regions and show that in addition to the well-known role of PRC2 in silencing Hox genes via direct binding, its function is required for the changes in HoxA long-range interactions distinguishing proximal limbs from distal limbs.

View Article and Find Full Text PDF

Pioneer transcription factors have the unique and important role of unmasking chromatin domains during development to allow the implementation of new cellular programs. Compared with those of other transcription factors, this activity implies that pioneer factors can recognize their target DNA sequences in so-called compacted or "closed" heterochromatin and can trigger remodeling of the adjoining chromatin landscape to provide accessibility to nonpioneer transcription factors. Recent studies identified several steps of pioneer action, namely rapid but weak initial binding to heterochromatin and stabilization of binding followed by chromatin opening and loss of cytosine-phosphate-guanine (CpG) methylation that provides epigenetic memory.

View Article and Find Full Text PDF

Pioneer transcription factors establish new cell-fate competence by triggering chromatin remodeling. However, many features of pioneer action, such as their kinetics and stability, remain poorly defined. Here, we show that Pax7, by opening a unique repertoire of enhancers, is necessary and sufficient for specification of one pituitary lineage.

View Article and Find Full Text PDF

The nine Pax transcription factors that constitute the mammalian family of paired domain (PD) factors play key roles in many developmental processes. As DNA binding transcription factors, they exhibit tremendous variability and complexity in their DNA recognition patterns. This is ascribed to the presence of multiple DNA binding structural domains, namely helix-turn-helix (HTH) domains.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsp1v5mk60k71v2vf0bd5jg0qmg8b0dtk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once