This study investigated the efficacy of various traps differing in colour (green or yellow), presence or absence of decoys (dead Agrilus planipennis) or design (commercial MULTz or multifunnel traps, and homemade bottle- or fan-traps) for monitoring European Buprestidae in deciduous forests and pear orchards. Over two years, we collected 2220 samples on a two-week basis from 382 traps across 46 sites in Belgium and France. None of the traps proved effective for monitoring Agrilus sinuatus in infested pear orchards (17 specimens captured in 2021, 0 in 2022).
View Article and Find Full Text PDFThe spruce bark beetle, , is causing severe economic losses during epidemic phases triggered by droughts and/or windstorms. Sanitation felling and salvage logging are usually the most recommended strategies to limit the damages. However, any additional control method to limit the economic impact of an outbreak would be welcome.
View Article and Find Full Text PDFDigitalization is having an increasing impact on all industrial sectors, including the chemical and biotechnological industries. Aiming for innovative research and development, the Swiss Universities of Applied Sciences play a pivotal role in transferring academic knowledge and know-how to industrial practice. We review selected examples of projects related to the digitalization of processes and bioprocesses at four different institutions across Switzerland.
View Article and Find Full Text PDFMol Phylogenet Evol
February 2021
Social parasitism, i.e. the parasitic dependence of a social species on another free-living social species, is one of the most intriguing phenomena in social insects.
View Article and Find Full Text PDFOver the last decade, genetic studies on social insects have revealed a remarkable diversity of unusual reproductive strategies, such as male clonality, female clonality, and social hybridogenesis. In this context, Cataglyphis desert ants are useful models because of their unique reproductive systems. In several species, queens conditionally use sexual reproduction and parthenogenesis to produce sterile workers and reproductive queens, respectively.
View Article and Find Full Text PDFIn most social Hymenoptera, a diploid egg develops into either a queen or a worker depending on environmental conditions. Hybridogenetic Cataglyphis ants display a bizarre genetic system, where queen-worker caste determination is primarily determined by genetic factors. In hybridogenetic populations, all workers are F1 hybrids of two distinct lineages, whereas new queens are nearly always pure-lineage individuals produced by clonal reproduction.
View Article and Find Full Text PDFIn addition to their use in DNA sequencing, ultrathin nanopore membranes have potential applications in detecting topological variations in deoxyribonucleic acid (DNA). This is due to the fact that when topologically edited DNA molecules, driven by electrophoretic forces, translocate through a narrow orifice, transient residings of edited segments inside the orifice modulate the ionic flow. Here we utilize two programmable barcoding methods based on base-pairing, namely forming a gap in dsDNA and creating protrusion sites in ssDNA for generating a hybrid DNA complex.
View Article and Find Full Text PDFCaste determination in social Hymenoptera (whether a female egg develops into a reproductive queen or a sterile worker) is a remarkable example of phenotypic plasticity where females with highly similar genomes exhibit striking differences in morphology and behaviour. This phenotypic dichotomy is typically influenced by environmental factors. However, recent studies have revealed a strong caste-genotype association in hybridogenetic ants: workers are all interlineage hybrids while queens are all purebred, suggesting that female caste fate is genetically determined.
View Article and Find Full Text PDFBackground: Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed.
View Article and Find Full Text PDFBMC Bioinformatics
November 2014
Computational expression deconvolution aims to estimate the contribution of individual cell populations to expression profiles measured in samples of heterogeneous composition. Zhong et al. recently proposed Digital Sorting Algorithm (BMC Bioinformatics 2013 Mar 7;14:89) and showed that they could accurately estimate population-specific expression levels and expression differences between two populations.
View Article and Find Full Text PDFInsertions of the human-specific subfamily of LINE-1 (L1) retrotransposon are highly polymorphic across individuals and can critically influence the human transcriptome. We hypothesized that L1 insertions could represent genetic variants determining important human phenotypic traits, and performed an integrated analysis of L1 elements and single nucleotide polymorphisms (SNPs) in several human populations. We found that a large fraction of L1s were in high linkage disequilibrium with their surrounding genomic regions and that they were well tagged by SNPs.
View Article and Find Full Text PDFLibrary preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation.
View Article and Find Full Text PDFBackground: Huntington's disease (HD) is a neurodegenerative disorder with selective vulnerability of striatal neurons and involves extensive transcriptional dysregulation early in the disease process. Previous work in cell and mouse models has shown that histone modifications are altered in HD. Specifically, monoubiquitylated histone H2A (uH2A) is present at the promoters of downregulated genes which led to the hypothesis that uH2A plays a role in transcriptional silencing in HD.
View Article and Find Full Text PDFBackground: Interpreting gene expression profiles obtained from heterogeneous samples can be difficult because bulk gene expression measures are not resolved to individual cell populations. We have recently devised Population-Specific Expression Analysis (PSEA), a statistical method that identifies individual cell types expressing genes of interest and achieves quantitative estimates of cell type-specific expression levels. This procedure makes use of marker gene expression and circumvents the need for additional experimental information like tissue composition.
View Article and Find Full Text PDFPolyglutamine (PolyQ) diseases have common features that include progressive selective neurodegeneration and the formation of protein aggregates. There is growing evidence to suggest that critical nuclear events lead to transcriptional alterations in PolyQ diseases such as spinocerebellar ataxia type 7 (SCA7) and Huntington's disease (HD), conditions which share a cerebellar degenerative phenotype. Taking advantage of laser capture microdissection technique, we compared the Purkinje cell (PC) gene expression profiles of two transgenic polyQ mouse models (HD: R6/2; SCA7: P7E) by microarray analysis that was validated by real time quantitative PCR.
View Article and Find Full Text PDFIn Huntington's disease (HD; MIM ID #143100), a fatal neurodegenerative disorder, transcriptional dysregulation is a key pathogenic feature. Histone modifications are altered in multiple cellular and animal models of HD suggesting a potential mechanism for the observed changes in transcriptional levels. In particular, previous work has suggested an important link between decreased histone acetylation, particularly acetylated histone H3 (AcH3; H3K9K14ac), and downregulated gene expression.
View Article and Find Full Text PDFHuman diseases are often accompanied by histological changes that confound interpretation of molecular analyses and identification of disease-related effects. We developed population-specific expression analysis (PSEA), a computational method of analyzing gene expression in samples of varying composition that can improve analyses of quantitative molecular data in many biological contexts. PSEA of brains from individuals with Huntington's disease revealed myelin-related abnormalities that were undetected using standard differential expression analysis.
View Article and Find Full Text PDFFetal exposure to environmental insults increases the susceptibility to late-onset neuropsychiatric disorders. Alcohol is listed as one of such prenatal environmental risk factors and known to exert devastating teratogenetic effects on the developing brain, leading to complex neurological and psychiatric symptoms observed in fetal alcohol spectrum disorder (FASD). Here, we performed a coordinated transcriptome analysis of human and mouse fetal cerebral cortices exposed to ethanol in vitro and in vivo, respectively.
View Article and Find Full Text PDFR6/2 transgenic mice with expanded CAG repeats (>300) have a surprisingly prolonged disease progression and longer lifespan than prototypical parent R6/2 mice (carrying 150 CAGs); however, the mechanism of this phenotype amelioration is unknown. We compared gene expression profiles in the striatum of R6/2 transgenic mice carrying ~300 CAG repeats (R6/2(Q300) transgenic mice) to those carrying ~150 CAG repeats (R6/2(Q150) transgenic mice) and littermate wildtype controls in order to identify genes that may play determinant roles in the time course of phenotypic expression in these mice. Of the top genes showing concordant expression changes in the striatum of both R6/2 lines, 85% were decreased in expression, while discordant expression changes were observed mostly for genes upregulated in R6/2(Q300) transgenic mice.
View Article and Find Full Text PDFHuntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear.
View Article and Find Full Text PDFMotor dysfunction, cognitive impairment, and regional cortical atrophy indicate cerebral cortical involvement in Huntington disease (HD). To address the hypothesis that abnormal corticostriatal connectivity arises from polyglutamine-related alterations in cortical gene expression, we isolated layer 5 cortical neurons by laser-capture microdissection and analyzed transcriptome-wide mRNA changes in them. Enrichment of transcription factor mRNAs including foxp2, tbr1, and neuroD6, and neurotransmission- and plasticity-related RNAs including sema5A, pclo, ntrk2, cntn1, and Lin7b were observed.
View Article and Find Full Text PDFHuntington disease (HD) is a fatal neurodegenerative disease with no effective treatment. In the R6/1 mouse model of HD, environmental enrichment delays the neurologic phenotype onset and prevents cerebral volume loss by unknown molecular mechanisms. We examined the effects of environmental enrichment on well-characterized neuropathological parameters in a mouse model of HD.
View Article and Find Full Text PDF