Publications by authors named "Alexandre Javier"

Article Synopsis
  • The research focuses on the fruit fly Drosophila melanogaster as a crucial model in neuroscience, aided by extensive resources like the FlyWire whole-brain connectome and a hierarchical annotation of neuron classes and types.
  • The study reveals 8,453 annotated cell types, with 4,581 being newly identified, highlighting the complexity of the fly brain and emphasizing the difficulty in reidentifying some hemibrain cell types in FlyWire.
  • A new definition of cell type is proposed based on cell similarities across different brains, and the study illustrates findings related to neuron connectivity, structural stability, and a consensus atlas for the fly brain's neuroanatomy, supporting future comparative studies.
View Article and Find Full Text PDF
Article Synopsis
  • In complex nervous systems like those of insects, the neck connective serves as a crucial link between the brain and the ventral nerve cord, facilitating sensorimotor control through various types of neurons.
  • This study integrates multiple electron microscopy datasets to provide a detailed map of ascending and descending neurons in the female nervous system, while also making comparisons to the male nerve cord.
  • The findings highlight specific neuron types linked to sex-related behaviors, including those involved in female egg-laying and male courtship, marking a groundbreaking analysis of the animal's entire central nervous system at the electron microscopy level.
View Article and Find Full Text PDF
Article Synopsis
  • The fruit fly is a key model organism in neuroscience due to its complex behaviors and accessible nervous system, bolstered by collaborative genetic resources.*
  • The FlyWire project has produced the first complete brain connectome of an adult fruit fly, providing a detailed catalog of approximately 130,000 neurons, including 4,552 cell types.*
  • Analysis indicated that while some neuronal connections were stable, others showed variability across individuals, revealing complexities in brain function and suggesting some cell types from previous studies may not be reliably identified in this new dataset.*
View Article and Find Full Text PDF

The connectome provides large-scale connectivity and morphology information for the majority of the central brain of . Using this data set, we provide a complete description of the olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons.

View Article and Find Full Text PDF

Nervous systems contain sensory neurons, local neurons, projection neurons, and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analog of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain.

View Article and Find Full Text PDF

We used the Land Colour Mondrian experiments in a Bayesian context to test the degree to which subjects vary in categorizing the colour of different patches, when each patch is made to reflect light of the identical wavelength-energy composition. The brain uses a ratio-taking mechanism to determine the ratio of light of every waveband reflected from a surface and from its surrounds. Our (Bayesian) hypothesis was that this ratio-taking mechanism is similar in all humans and therefore leads to a constant categorization of colours that differs little between them.

View Article and Find Full Text PDF