The connectome provides large-scale connectivity and morphology information for the majority of the central brain of . Using this data set, we provide a complete description of the olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons.
View Article and Find Full Text PDFNervous systems contain sensory neurons, local neurons, projection neurons, and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analog of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain.
View Article and Find Full Text PDFWe used the Land Colour Mondrian experiments in a Bayesian context to test the degree to which subjects vary in categorizing the colour of different patches, when each patch is made to reflect light of the identical wavelength-energy composition. The brain uses a ratio-taking mechanism to determine the ratio of light of every waveband reflected from a surface and from its surrounds. Our (Bayesian) hypothesis was that this ratio-taking mechanism is similar in all humans and therefore leads to a constant categorization of colours that differs little between them.
View Article and Find Full Text PDF