Publications by authors named "Alexandre Gremiaux"

It is now accepted that plants perceive high-frequency electromagnetic field (HF-EMF). We wondered if the HF-EMF signal is integrated further in planta as a chain of reactions leading to a modification of plant growth. We exposed whole small ligneous plants (rose bush) whose growth could be studied for several weeks.

View Article and Find Full Text PDF

In the olfactory system of male moths, a specialized subset of neurons detects and processes the main component of the sex pheromone emitted by females. It is composed of several thousand first-order olfactory receptor neurons (ORNs), all expressing the same pheromone receptor, that contact synaptically a few tens of second-order projection neurons (PNs) within a single restricted brain area. The functional simplicity of this system makes it a favorable model for studying the factors that contribute to its exquisite sensitivity and speed.

View Article and Find Full Text PDF

The French scientist Claude Bernard (1813-1878) is famous for his discoveries in physiology and for introducing rigorous experimental methods to medicine and biology. One of his major technical innovations was the use of chemicals in order to disrupt normal physiological function to test hypotheses. But less known is his conviction that the physiological functions of all living organisms rely on the same underlying principles.

View Article and Find Full Text PDF

A statistical model of the population of first-order olfactory receptor neurons (ORNs) is proposed and analysed. It describes the relationship between stimulus intensity (odour concentration) and coding variables such as rate and latency of the population of several thousand sex-pheromone sensitive ORNs in male moths. Although these neurons likely express the same olfactory receptor, they exhibit, at any concentration, a relatively large heterogeneity of responses in both peak firing frequency and latency of the first action potential fired after stimulus onset.

View Article and Find Full Text PDF

The molecular mechanisms that control the binding of odorant to olfactory receptors and transduce this signal into membrane depolarization are reviewed. They are compared in vertebrates and insects for interspecific (allelochemicals) and intraspecific (pheromones) olfactory signals. Attempts to develop quantitative models of these multistage signalling networks are presented.

View Article and Find Full Text PDF