Understanding the competing processes that govern far ultraviolet photodissociation (FUV-PD) of biopolymers such as proteins is a challenge. Here, we report a combined experimental and theoretical investigation of FUV-PD of protonated leucine-enkephalin pentapeptide ([YGGFL + H]) in the gas-phase. Time-dependent density functional theory (TD-DFT) calculations in combination with experiments and previous results for amino acids and shorter peptides help in rationalizing the evolution of the excited states.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2023
Correction for 'UV and VUV-induced fragmentation of tin-oxo cage ions' by Jarich Haitjema , , 2021, , 20909-20918, https://doi.org/10.1039/D1CP03148A.
View Article and Find Full Text PDFThe present work combines the near edge X-ray absorption mass spectrometry of a protonated adenosine 5'-triphosphate (ATP) molecule isolated in an ion trap with (time-dependent) density functional theory calculations. Our study unravels the effect of protonation on the ATP structure and its spectral properties, providing structure-property relationships at atomistic resolution for protonated ATP (ATPH) isolated in the gas-phase conditions. On the other hand, the present C and N K-edge X-ray absorption spectra of isolated ATPH appear closely like those previously reported for solvated ATP at low pH.
View Article and Find Full Text PDFThe two inseparable companions, tropylium () and benzylium (), were interrogated by vacuum ultraviolet (VUV) radiation from 4.5 to 7.0 eV in an ion trap.
View Article and Find Full Text PDFPossible routes for intra-cluster bond formation (ICBF) in protonated serine dimers have been studied. We found no evidence of ICBF following low energy collision-induced dissociation (in correspondence with previous works), however, we do observe clear evidence for ICBF following photon absorption in the 4.6-14 eV range.
View Article and Find Full Text PDFThe gas phase offers the possibility to analyze organic molecules by ultraviolet-vacuum ultraviolet (UV-VUV) spectroscopy without any solvent effect or limitation in terms of spectral range due to absorption by the solvent. Up to now, the size and chemical composition of neutral molecular systems under study have been limited by the use of vaporization methods based on thermal heating. Soft sources of gas-phase thermolabile molecular systems such as electrospray or matrix-assisted laser desorption ionization are appealing alternatives to heating-based techniques, but they lead to the production of ions.
View Article and Find Full Text PDFPhotoresist materials are being optimized for the recently introduced Extreme Ultraviolet (EUV) photolithographic technology. Organometallic compounds are potential candidates for replacing the ubiquitous polymer-based chemically amplified resists. Tin (Sn) has a particularly large absorption cross section for EUV light (13.
View Article and Find Full Text PDFGas-phase decompositions of polymer ions play an important role in mass spectrometry to obtain accurate structural information. In this work, UV photoactivation experiments were performed from two poly(dimethylsiloxane)s bearing different end groups (two trimethylsilyl, or α--butyl and ω- trimethylsilyl). Precursor ions, such as [Polysiloxane+Cation] produced by an electrospray source, were stored in a linear ion trap and then submitted to synchrotron UV irradiation during different activation times and over a range of wavelengths (52 to 248 nm) from extreme UV (XUV) to deep UV.
View Article and Find Full Text PDFMammalian hyaluronidases are endo-N-acetyl-D-hexosaminidases involved in the catabolism of hyaluronic acid (HA) but their role in the catabolism of chondroitin sulfate (CS) is also examined. HA and CS are glycosaminoglycans implicated in several physiological and pathological processes, and understanding their metabolism is of significant importance. Data have been previously reported on the degradation of CS under the action of hyaluronidase, yet a detailed structural investigation of CS depolymerization products remains necessary to improve our knowledge of the CS depolymerizing activity of hyaluronidase.
View Article and Find Full Text PDFInt J Biol Macromol
December 2020
The partial enzymatic hydrolysis of wheat gliadins constitutes an interesting tool to unravel their structural specificity. In this work, the structure and conformation of γ-gliadin were investigated through its limited chymotrypsic digestion. Using a combination of computational, biochemical and biophysical tools, we studied each of its N and C terminal domains.
View Article and Find Full Text PDFGas-phase near-edge X-ray-absorption fine structure (NEXAFS) action spectroscopy around the oxygen K-edge and mass spectrometry were employed to probe isolated substance P (SP) molecular ions, both bare and progressively solvated with 4 and 11 water molecules. Detailed mass spectra of bare and hydrated precursors are presented for the resonant photon energy of 532 eV that corresponds to O1s →π* core excitation, triggering resonant Auger decay and fragmentation from the ionized radical molecular system. The fragmentation pattern of doubly protonated SP hydrated with 4 water molecules clearly shows a series of abundant doubly charged backbone fragments, as well as triply charged precursor with small neutral losses, all preserving full water cluster.
View Article and Find Full Text PDFRationale: By taking advantage of the gas-phase decompositions of polymer ions, tandem mass spectrometry of polymers allows us to obtain more accurate structural information than from a simple mass measurement. Applied to a model polymer, the goal of this work was to evaluate the performances of an activation technique based on ultraviolet (UV) irradiation, as an alternative to conventional collisional activation.
Methods: Sodiated poly(ethylene glycol) produced by electrospray ionization was isolated in a linear ion trap, then submitted to synchrotron UV irradiation over a range of wavelengths (52 to 248 nm).
Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the limitations of current broadband UV SRCD setups. This technique allows accessing ultrafast time scales (down to nanoseconds), previously measurable only by other methods, such as infrared (IR), nuclear magnetic resonance (NMR), fluorescence and absorbance spectroscopies, and small angle X-ray scattering (SAXS).
View Article and Find Full Text PDFWheat storage proteins, gliadins, were found to form in vitro condensates in 55% ethanol/water mixture by decreasing temperature. The possible role of this liquid-liquid phase separation (LLPS) process on the in vivo gliadins storage is elusive and remains to be explored. Here we use γ-gliadin as a model of wheat proteins to probe gliadins behavior in conditions near physiological conditions.
View Article and Find Full Text PDFAction spectroscopy using photon excitation in the VUV range (photon energy 4.5-9 eV) was performed on protonated uracil (UraH) and uridine (UrdH). The precursor ions with m/ z 113 and m/ z 245, respectively, were produced by an electrospray ionization source and accumulated inside a quadrupole ion trap mass spectrometer.
View Article and Find Full Text PDFIn cosmic environments, polycyclic aromatic hydrocarbons (PAHs) strongly interact with vacuum ultraviolet (VUV) photons emitted by young stars. Trapped PAH cations ranging in size from 30 to 48 carbon atoms were irradiated by tunable synchrotron light (DESIRS beamline at SOLEIL). Their ionization and dissociation cross sections were determined and compared with TD-DFT computed photoabsorption cross sections.
View Article and Find Full Text PDFDNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons.
View Article and Find Full Text PDFRadiation therapy is a basic part of cancer treatment. To increase the DNA damage in carcinogenic cells and preserve healthy tissue at the same time, radiosensitizing molecules such as halogenated nucleobase analogs can be incorporated into the DNA during the cell reproduction cycle. In the present study 8.
View Article and Find Full Text PDFPerfluorocarbons, a class of fully fluorinated compounds, are highly persistent and toxic pollutants that are receiving increasing attention due to their widespread environmental distribution. In this study, attention was focused on one compound in particular, namely, perfluorooctanoic acid (PFOA). The first investigation of the UV/VUV photochemistry of the PFOA anion in the gas phase by action spectroscopy of selected ions is reported.
View Article and Find Full Text PDFThe nonapeptide oxytocin (OT) is used as a model sulfur-containing peptide to study the damage induced by vacuum UV (VUV) radiations. In particular, the effect of the presence (or absence in reduced OT) of oxytocin's internal disulfide bridge is evaluated in terms of photo-fragmentation yield and nature of the photo-fragments. Intact, as well as reduced, OT is studied as dianions and radical anions.
View Article and Find Full Text PDFTandem mass spectrometry has long been established as a corner stone of analytical and structural chemistry. Fast radical-directed dissociation, produced by electron-transfer and electron-capture dissociation (ETD and ECD) has been shown to provide important complementary information to collision-induced dissociation (CID). We report the first application of extreme-ultraviolet (XUV) lamps to tandem mass spectrometry.
View Article and Find Full Text PDFRe-investigation of the chemical composition of the annual plant Zucc. led to the identification of clarinoside, a new pentalogin derivative containing a rare quinovose moiety, and the known compound harounoside. While the planar structure was fully determined using tandem mass spectrometry (MS) and quantum mechanics (QM) calculations, the tridimensional structure was unravelled after isolation and NMR analysis.
View Article and Find Full Text PDFCarotenoids are important natural pigments and micronutrients contributing to health prevention by several mechanisms, including their electron-donating (antioxidant) activity. In this work, a large series of carotenoids, including 11 carotenes and 14 xanthophylls, have been investigated by wavelength-resolved atmospheric pressure photoionization mass spectrometry (DISCO line of SOLEIL synchrotron), thus allowing the experimental determination of their ionization energy (IE) for the first time. On the other hand, the carotenoids have been also investigated for their ability to inhibit the heme iron-induced peroxidation of linoleic acid in mildly acidic micelles, a simple but relevant chemical model of oxidative stress in the gastric compartment.
View Article and Find Full Text PDFBackground: Synchrotron radiation circular dichroism (SRCD) and Fourier transform infrared (FTIR) spectroscopy were used to examine the conformation evolution of micellar casein (MC) powder during storage and to determine whether the spectral changes could be related to their solubility evolution.
Results: A loss in intensity of SRCD spectra as a function of storage time has been observed. Quantification of secondary structures revealed losses of α-helix content during storage.
Unlabelled: Lipid droplets are the major stock of lipids in oleaginous plant seeds. Despite their economic importance for oil production and biotechnological issues (biofuels, lubricants and plasticizers), numerous questions about their formation, structure and regulation are still unresolved. To determine water accessible domains of protein coating at lipid droplets surface, a structural proteomic approach has been performed.
View Article and Find Full Text PDF