Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.
View Article and Find Full Text PDFSingle-molecule surface-enhanced Raman spectroscopy (SM-SERS) is a powerful experimental technique for label-free sensing, imaging, and chemical analysis. Although Raman spectroscopy itself is an extremely "feeble" phenomenon, the intense interaction of optical fields with metallic nanostructures in the form of plasmonic hotspots can generate Raman signals from single molecules. While what constitutes a true single-molecule signal has taken some years for the scientific community to establish, many SERS experiments, even those not specifically attempting single-molecule sensitivity, have observed fluctuation in both the SERS intensity and spectral features.
View Article and Find Full Text PDFThe indiscriminate use of pesticides in agriculture demands the development of devices capable of monitoring contaminations in food supplies, in the environment and biological fluids. Simplicity, easy handling, high sensitivities, and low limits-of-detection (LOD) and quantification are some of the required properties for these devices. In this work, we evaluated the effect of incorporating gold nanoparticles into indigo carmine-doped polypyrrole during the electropolymerization of films for use as an acetylcholinesterase (AChE) enzyme-based biosensor.
View Article and Find Full Text PDFRadiation-induced lung injury (RILI) is a dose-limiting toxicity for cancer patients receiving thoracic radiotherapy. As such, it is important to characterize metabolic associations with the early and late stages of RILI, namely pneumonitis and pulmonary fibrosis. Recently, Raman spectroscopy has shown utility for the differentiation of pneumonitic and fibrotic tissue states in a mouse model; however, the specific metabolite-disease associations remain relatively unexplored from a Raman perspective.
View Article and Find Full Text PDFReprogramming of cellular metabolism is a driving factor of tumour progression and radiation therapy resistance. Identifying biochemical signatures associated with tumour radioresistance may assist with the development of targeted treatment strategies to improve clinical outcomes. Raman spectroscopy (RS) can monitor post-irradiation biomolecular changes and signatures of radiation response in tumour cells in a label-free manner.
View Article and Find Full Text PDFGraphene is a carbon material with extraordinary properties that has been drawing a significant amount of attention in the recent decade. High-quality graphene can be produced by different methods, such as epitaxial growth, chemical vapor deposition, and micromechanical exfoliation. The reduced graphene oxide route is, however, the only current approach that leads to the large-scale production of graphene materials at a reasonable cost.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic started more than 3 years ago, but the containment of the spread is still a challenge. Screening is imperative for informed decision making by government authorities to contain the spread of the virus locally. The access to screening tests is disproportional, due to the lack of access to reagents, equipment, finances or because of supply chain disruptions.
View Article and Find Full Text PDFA biosensor was developed for directly detecting human immunoglobulin G (IgG) and adenosine triphosphate (ATP) based on stable and reproducible gold nanoparticles/polystyrene-b-poly(2-vinylpyridine) (AuNP/PS-b-P2VP) nanocomposites. The substrates were functionalized with carboxylic acid groups for the covalent binding of anti-IgG and anti-ATP and the detection of IgG and ATP (1 to 150 μg/mL). SEM images of the nanocomposite show 17 ± 2 nm AuNP clusters adsorbed over a continuous porous PS-b-P2VP thin film.
View Article and Find Full Text PDFRaman spectroscopy is a useful tool for obtaining biochemical information from biological samples. However, interpretation of Raman spectroscopy data in order to draw meaningful conclusions related to the biochemical make up of cells and tissues is often difficult and could be misleading if care is not taken in the deconstruction of the spectral data. Our group has previously demonstrated the implementation of a group- and basis-restricted non-negative matrix factorization (GBR-NMF) framework as an alternative to more widely used dimensionality reduction techniques such as principal component analysis (PCA) for the deconstruction of Raman spectroscopy data as related to radiation response monitoring in both cellular and tissue data.
View Article and Find Full Text PDFThe concept of plasmonic "hotspots" is central to the broad field of nanophotonics. In surface-enhanced Raman scattering (SERS), hotspots can increase Raman scattering efficiency by orders of magnitude. Hotspot dimensions may range from a few nanometers down to the atomic scale and are able to generate SERS signals from single molecules.
View Article and Find Full Text PDFAn economical and facile method to synthesize a precursor for carbon films and materials has been developed. This precursor can be easily coated onto substrates without binder reagents and then converted into a graphitic-like structure after mild thermal treatment. This approach potentially allows the coating of glass surfaces of different shapes and forms, such as the inside of a glass tube, for instance.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) is a sensitive, widely used spectroscopic technique. However, SERS is perceived as poorly reproducible and insufficiently robust for standard applications in analytical chemistry. Here, we demonstrated that reliable SERS immunoassay quantification at low concentrations (pM range) can be achieved by careful experimental design and appropriate data analysis statistics.
View Article and Find Full Text PDFGenerally, anatase is the most desirable TiO polymorphic phase for photovoltaic and photocatalytic applications due to its higher photoconductivity and lower recombination rates compared to the rutile phase. However, in applications where temperatures above 500 °C are required, growing pure anatase phase nanoparticles is still a challenge, as above this temperature TiO crystallite sizes are larger than 35 nm which thermodynamically favors the growth of rutile crystallites. In this work, we show strong evidence, for the first time, that achieving a specific fraction (50%) of the {112} facets on the TiO surface is the key limiting step for anatase-to-rutile phase transition, rather than the crystallite size.
View Article and Find Full Text PDFThis work combines Raman spectroscopy (RS) with supervised learning methods-group and basis restricted non-negative matrix factorisation (GBR-NMF) and linear discriminant analysis (LDA)-to aid in the prediction of clinical indicators of disease progression in a cohort of 9 patients receiving high dose rate brachytherapy (HDR-BT) as the primary treatment for intermediate risk (D'Amico) prostate adenocarcinoma. The combination of Raman spectroscopy and GBR-NMF-sparseLDA modelling allowed for the prediction of the following clinical information; Gleason score, cancer of the prostate risk assessment (CAPRA) score of pre-treatment biopsies and a Ki67 score of < 3.5% or > 3.
View Article and Find Full Text PDFHigh-dose-rate-brachytherapy (HDR-BT) is an increasingly attractive alternative to external beam radiation-therapy for patients with intermediate risk prostate cancer. Despite this, no bio-marker based method currently exists to monitor treatment response, and the changes which take place at the biochemical level in hypo-fractionated HDR-BT remain poorly understood. The aim of this pilot study is to assess the capability of Raman spectroscopy (RS) combined with principal component analysis (PCA) and random-forest classification (RF) to identify radiation response profiles after a single dose of 13.
View Article and Find Full Text PDFOne of the major issues in current radiotherapy (RT) is the associated normal tissue toxicity. Enhancement of the RT effect with novel radiosensitizers can address this need. In this study, gold nanoparticles (GNPs) and bleomycin (BLM) were used as a unique combination of radiosensitizers.
View Article and Find Full Text PDFPropagating surface plasmon waves have been used for many applications including imaging and sensing. However, direct in-plane imaging of micro-objects with surface plasmon waves suffers from the lack of simple, two-dimensional lenses, mirrors, and other optical elements. In this paper, we apply lensless digital holographic techniques and leakage radiation microscopy to achieve in-plane surface imaging with propagating surface plasmon waves.
View Article and Find Full Text PDFThe development of efficient advanced functional materials is highly dependent on properties such as morphology, crystallinity, and surface functionality. In this work, hierarchical flowerlike nanostructures of SrTiO have been synthesized by a simple template-free solvothermal method involving poly(vinylpyrrolidone) (PVP). Molecular dynamics simulations supported by structural characterization have shown that PVP preferentially adsorbs on {110} facets, thereby promoting the {100} facet growth.
View Article and Find Full Text PDFGold nanoparticles have emerged as a prominent tool in nanomedicine, particularly for applications in cancer diagnostic and treatment. One of the challenges for the successful implementation of gold nanoparticles in cancer therapy is their delivery to the specific cancer area within the tumor microenvironment. The presence of cancer enables a poorly organized vascularization system, increasing the pressure with the microenvironment, limiting the uptake of particles.
View Article and Find Full Text PDFThe advent of miniaturized, fiber-based, Raman spectrometers provides a clear path for the wide implementation of surface-enhanced Raman scattering (SERS) in analytical chemistry. For instance, miniaturized systems are especially useful in field applications due to their simplicity and low cost. However, traditional SERS substrates are generally developed and optimized using expensive Raman microscope systems equipped with high numerical aperture (NA) objective lenses.
View Article and Find Full Text PDFThe observation of single molecule events using surface-enhanced Raman scattering (SERS) is a well-established phenomenon. These events are characterized by strong fluctuations in SERS intensities. High-speed SERS intensity fluctuations (in the microsecond time scale) have been reported for experiments involving single metallic particles.
View Article and Find Full Text PDFThis review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed.
View Article and Find Full Text PDFThe concept of plasmonic hotspots is central to the interpretation of the surface-enhanced Raman scattering (SERS) effect. Although plasmonic hotspots are generally portrayed as static features, single-molecule SERS (SM-SERS) is marked by characteristic time-dependent fluctuations in signal intensity. The origin of those fluctuations can be assigned to a variety of dynamic and complex processes, including molecular adsorption or desorption, surface diffusion, molecular reorientation and metal surface reconstruction.
View Article and Find Full Text PDF