The compound [Cp2Ti(Me)(CD2Cl2)][B(C6F5)4] reacts with trimethylvinylsilane (TMVS) to form the 1,2-insertion product [Cp2TiCH2CHMe(SiMe3)](+) (III), which exists in solution as equilibrating β- and γ-agostic isomers. In addition, while free rotation of the β-methyl group results in a single, averaged γ-H atom resonance at higher temperatures, decoalescence occurs below ~200 K, and the resonance of the γ-agostic hydrogen atom at δ ~ -7.4 is observed.
View Article and Find Full Text PDFThe compound Cp(2)TiMe(2) reacts with [Ph(3)C][B(C(6)F(5))(4)] in CD(2)Cl(2) at 205 K to give, inter alia, [Cp(2)TiMe(CD(2)Cl(2))][B(C(6)F(5))(4)]. This solvent-separated ion pair reacts in turn with 2,4-dimethyl-1-pentene (DMP) to give a series of cationic species, the first being the alkene complex [Cp(2)TiMe(DMP)](+), which undergoes ready migratory insertion to form the σ-alkyl complex [Cp(2)Ti(CH(2)CMe(2)CH(2)CHMe(2))](+). The latter, which does not contain a β-hydrogen atom, rearranges rapidly via an unprecedented 1,5-σ bond metathesis reaction involving two isomeric ε-agostic species to give the σ-alkyl species [Cp(2)Ti(CH(2)CHMeCH(2)CMe(3))](+); this does contain a β-hydrogen atom and, in concurrent processes, eliminates H(2) or 2,4,4-trimethyl-1-pentene (a major product) to form respectively the allylic complex [Cp(2)Ti{η(3)-(CH(2))(2)CCH(2)CMe(3)}](+) (a major product) or the hydride complex [Cp(2)TiH](+).
View Article and Find Full Text PDF