Designing and understanding the mechanism of non-stoichiometric materials with enhanced properties is challenging, both experimentally and even computationally, due to the large number of chemical spaces and their distributions through the material. In the current work, it is proposed a Machine Learning approach coupled with the Efficient Global Optimization (EGO) method-an Adaptive Design (AD)-to model local defects in materials from first-principle calculations. Our method takes into account the smallest sample set as possible, envisioning the material defect structure relationship with target properties for new insights.
View Article and Find Full Text PDF