In this paper, a neural network approach is applied for solving an electromagnetic inverse problem involving solid dielectric materials subjected to shock impacts and interrogated by a millimeter-wave interferometer. Under mechanical impact, a shock wave is generated in the material and modifies the refractive index. It was recently demonstrated that the shock wavefront velocity and the particle velocity as well as the modified index in a shocked material can be remotely derived from measuring two characteristic Doppler frequencies in the waveform delivered by a millimeter-wave interferometer.
View Article and Find Full Text PDFThe automated quantification of the behaviour of freely moving animals is increasingly needed in applied ethology. State-of-the-art approaches often require tags to identify animals, high computational power for data collection and processing, and are sensitive to environmental conditions, which limits their large-scale utilization, for instance in genetic selection programs of animal breeding. Here we introduce a new automated tracking system based on millimetre-wave radars for real time robust and high precision monitoring of untagged animals.
View Article and Find Full Text PDF