Background: Cassava mosaic disease (CMD) in Madagascar is caused by a complex of at least six African cassava mosaic geminivirus (CMG) species. This provides a rare opportunity for a comparative study of the evolutionary and epidemiological dynamics of distinct pathogenic crop-infecting viral species that coexist within the same environment. The genetic and spatial structure of CMG populations in Madagascar was studied and Bayesian phylogeographic modelling was applied to infer the origins of Madagascan CMG populations within the epidemiological context of related populations situated on mainland Africa and other south western Indian Ocean (SWIO) islands.
View Article and Find Full Text PDFThis is the first description of the complete genome sequence of a new bipartite begomovirus isolated from tomato (Solanum lycopersicum) in French Guiana, for which we propose the tentative name "tomato chlorotic mottle Guyane virus" (ToCMoGFV). DNA-A and -B nucleotide sequences of ToCMoGFV are only distantly related to known New World begomoviruses. They share the highest nucleotide sequence identity of 80% with the Brazilian isolates of macroptilium yellow spot virus (MacYSV) and 73% with soybean chlorotic spot virus (SBCSV).
View Article and Find Full Text PDFHere, we describe for the first time the complete genome sequence of a new bipartite begomovirus in Madagascar isolated from the weed Asystasia gangetica (Acanthaceae), for which we propose the tentative name asystasia mosaic Madagascar virus (AMMGV). DNA-A and -B nucleotide sequences of AMMGV were only distantly related to known begomovirus sequence and shared highest nucleotide sequence identity of 72.9 % (DNA-A) and 66.
View Article and Find Full Text PDFInitially designed to infer evolutionary relationships based on morphological and physiological characters, phylogenetic reconstruction methods have greatly benefited from recent developments in molecular biology and sequencing technologies with a number of powerful methods having been developed specifically to infer phylogenies from macromolecular data. This chapter, while presenting an overview of basic concepts and methods used in phylogenetic reconstruction, is primarily intended as a simplified step-by-step guide to the construction of phylogenetic trees from nucleotide sequences using fairly up-to-date maximum likelihood methods implemented in freely available computer programs. While the analysis of chloroplast sequences from various Vanilla species is used as an illustrative example, the techniques covered here are relevant to the comparative analysis of homologous sequences datasets sampled from any group of organisms.
View Article and Find Full Text PDFTwo complete nucleotide sequences of an alphasatellite isolated from a cassava plant with mosaic disease symptoms in Madagascar are described and analyzed. While the helper begomovirus was identified as an isolate of East African cassava mosaic Kenya virus (EACMKV), its associated alphasatellite was most closely related (80 % nucleotide sequence identity) to cotton leaf curl Gezira alphasatellite. These satellite molecules have typical features of alphasatellites, with a single gene in the virion sense, an A-rich region and a stem-loop structure.
View Article and Find Full Text PDFBackground: Cassava (Manihot esculenta) is a major food source for over 200 million sub-Saharan Africans. Unfortunately, its cultivation is severely hampered by cassava mosaic disease (CMD). Caused by a complex of bipartite cassava mosaic geminiviruses (CMG) species (Family: Geminivirideae; Genus: Begomovirus) CMD has been widely described throughout Africa and it is apparent that CMG's are expanding their geographical distribution.
View Article and Find Full Text PDFCassava mosaic geminiviruses (CMGs) are implicated in cassava mosaic disease (CMD), the main constraint to cassava production in Africa. Here, we report the complete nucleotide sequences of the DNA-A and DNA-B of a newly characterized CMG found infecting cassava in Madagascar, for which we propose the tentative name cassava mosaic Madagascar virus. With the exception of two recombinant regions that resembled a CMG, we determined that the non-recombinant part of the DNA-A component is distantly related to the other CMGs.
View Article and Find Full Text PDFBackground: Cassava mosaic disease (CMD) is a major constraint on cassava cultivation in Africa. The disease is endemic and is caused by seven distinct cassava mosaic geminiviruses (CMGs), some of them including several variants.
Findings: From cassava leaf samples presenting CMD symptoms collected in Burkina Faso, four DNA-A begomovirus components were cloned and sequenced, showing 99.