Metabolic dysregulation, including perturbed glutamine-glutamate homeostasis, is common among patients with cardiovascular diseases, but the underlying mechanisms remain largely unknown. Using the human MESA cohort, here we show that plasma glutamine-glutamate ratio is an independent risk factor for carotid plaque progression. Mice deficient in glutaminase-2 (Gls2), the enzyme that mediates hepatic glutaminolysis, developed accelerated atherosclerosis and susceptibility to catastrophic cardiac events, while Gls2 overexpression partially protected from disease progression.
View Article and Find Full Text PDFCutaneous melanoma is a cancer with a very poor prognosis mainly because of metastatic dissemination and therefore a deregulation of cell migration. Current therapies can benefit from complementary medicines as supportive care in oncology. In our study, we show that a dynamized ultra-low dilution of leads to an inhibition of migration on fibronectin of B16F10 melanoma cells, as well as a decrease in metastatic dissemination .
View Article and Find Full Text PDFBecause of their long lifespan, matrix proteins of the vascular wall, such as elastin, are subjected to molecular aging characterized by non-enzymatic post-translational modifications, like carbamylation which results from the binding of cyanate (mainly derived from the dissociation of urea) to protein amino groups. While several studies have demonstrated a relationship between increased plasma concentrations of carbamylated proteins and the development of cardiovascular diseases, molecular mechanisms explaining the involvement of protein carbamylation in these pathological contexts remain to be fully elucidated. The aim of this work was to determine whether vascular elastic fibers could be carbamylated, and if so, what impact this phenomenon would have on the mechanical properties of the vascular wall.
View Article and Find Full Text PDFAtomic force microscopy (AFM) enables the characterization of a wide range of samples including live cells. It is generally admitted that cancer cells are significantly softer than their normal counterparts, but imaging live cells by AFM using traditional modes can be at the cost of time or resolution. We describe how this tool can be used to estimate the motility of cancer versus normal cells, based on topographical and mechanical approaches, and coupled to optical imaging.
View Article and Find Full Text PDFGlioblastoma are characterized by an invasive phenotype, which is thought to be responsible for recurrences and the short overall survival of patients. In the last decade, the promising potential of ultrasmall gadolinium chelate-coated gold nanoparticles (namely Au@DTDTPA(Gd)) was evidenced for image-guided radiotherapy in brain tumors. Considering the threat posed by invasiveness properties of glioma cells, we were interested in further investigating the biological effects of Au@DTDTPA(Gd) by examining their impact on GBM cell migration and invasion.
View Article and Find Full Text PDFDynamic and reciprocal interactions generated by the communication between tumor cells and their matrix microenvironment, play a major role in the progression of a tumor. Indeed, the adhesion of specific sites to matrix components, associated with the repeated and coordinated formation of membrane protrusions, allow tumor cells to move along a determined pathway. Our study analyzed the mechanism of action of low-diluted Phenacetinum on murine cutaneous melanoma process in a fibronectin matrix environment.
View Article and Find Full Text PDFThe aim of the study was to get more insight into the role of LRP-1 in the mechanism of tumor progression in triple negative breast cancer. Atomic force microscopy, videomicroscopy, confocal microscopy and Rho-GTPAse activity assay were used on MDA-MB-231 and LRP-1-silenced cells. Silencing of LRP-1 in MDA-MB-231 cells was shown to led to a dramatic increase in the Young's modulus in parallel to a spectacular drop in membrane extension dynamics as well as a decrease in the cells migration abilities on both collagen I and fibronectin substrates.
View Article and Find Full Text PDFA method was developed to characterize the adhesion properties of single cells by using protein-functionalized atomic force microscopy (AFM) probes. The quantification by force spectroscopy of the mean detachment force between cells and a gelatin-functionalized colloidal tip reveals differences in cell adhesion properties that are not within reach of a traditional bulk technique, the washing assay. In this latter method, experiments yield semiquantitative and average adhesion properties of a large population of cells.
View Article and Find Full Text PDFElastin-derived peptides (EDPs) exert protumor activities by increasing tumor growth, migration and invasion. A number of studies have highlighted the potential of VGVAPG consensus sequence-derived elastin-like polypeptides whose physicochemical properties and biocompatibility are particularly suitable for applications, such as drug delivery and tissue engineering. However, among the EDPs, the influence of elastin-derived nonapeptides (xGxPGxGxG consensus sequence) remains unknown.
View Article and Find Full Text PDFAlthough the research on nanogels incorporating Gd chelates for theranostic applications has grown exponentially in recent years, knowledge about their biocompatibility is limited. We compared the biocompatibility of Gd-loaded hyaluronic acid-chitosan-based nanogels (GdCA⊂CS-TPP/HA) with two chitosan concentrations (2.5 and 1.
View Article and Find Full Text PDFAlthough it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules.
View Article and Find Full Text PDFIntroduction: Extracellular vesicles (EVs) are shed from cells and carry markers of the parent cells. Vesicles derived from cancer cells reach the bloodstream and locally influence important physiological processes. It has been previously shown that procoagulant vesicles are circulating in patients' fluids.
View Article and Find Full Text PDFThe gene encoding the Krebs cycle enzyme fumarate hydratase (FH) is mutated in hereditary leiomyomatosis and renal cell cancer (HLRCC). Loss of FH activity causes accumulation of intracellular fumarate, which can directly modify cysteine residues to form 2-succinocysteine through succination. We undertook a proteomic-based screen in cells and renal cysts from Fh1 (murine FH)-deficient mice and identified 94 protein succination targets.
View Article and Find Full Text PDFThe skin is the first physiological barrier, with a complex constitution, that provides defensive functions against multiple physical and chemical aggressions. Glyphosate is an extensively used herbicide that has been shown to increase the risk of cancer. Moreover there is increasing evidence suggesting that the mechanical phenotype plays an important role in malignant transformation.
View Article and Find Full Text PDFIt is generally accepted that a diatom cell wall is characterized by a siliceous skeleton covered by an organic envelope essentially composed of polysaccharides and proteins. Understanding of how the organic component is associated with the silica structure provides an important insight into the biomineralization process and patterning on the cellular level. Using a novel atomic force microscopy (AFM) imaging technique (Peak Force Tapping), we characterized nanomechanical properties (elasticity and deformation) of a weakly silicified marine diatom Cylindrotheca closterium (Ehrenb.
View Article and Find Full Text PDFThe lipid-layer technique allows reconstituting transmembrane proteins at a high density in microns size planar membranes and suspended to a lipid monolayer at the air/water interface. In this paper, we transferred these membranes onto two hydrophobic substrates for further structural analysis of reconstituted proteins by Atomic Force Microscopy (AFM). We used a mica sheet covered by a lipid monolayer or a sheet of highly oriented pyrolytic graphite (HOPG) to trap the lipid monolayer at the interface and the suspended membranes.
View Article and Find Full Text PDFReconstitution of transmembrane proteins by direct incorporation into supported lipid bilayers (SLBs) is a new method to provide suitable samples for high-resolution atomic force microscopy (AFM) analysis of membrane proteins. First experiments have reported successful incorporation of proteins into detergent-destabilized SLBs. Here, we analyzed by AFM the incorporation of membrane proteins in the presence of calcium, a divalent cation functionally important for several membrane proteins.
View Article and Find Full Text PDFThe mitochondrial outer membrane channel (VDAC), a central player in mitochondria and cell death, was reconstituted in polymer-supported phospholipid bilayers. Highly purified VDAC was first reconstituted in vesicles; channel properties and NADH-ferricyanide reductase activity were ascertained before deposition onto solid substrates. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-N-hydroxysuccinimide mixed vesicles containing VDAC were linked onto amine-grafted surfaces (glass and gold) and disrupted to form a VDAC-containing polymer-tethered planar bilayer.
View Article and Find Full Text PDFThe heterologous expression and purification of membrane proteins represent major limitations for their functional and structural analysis. Here we describe a new method of incorporation of transmembrane proteins in planar lipid bilayer starting from 1 pmol of solubilized proteins. The principle relies on the direct incorporation of solubilized proteins into a preformed planar lipid bilayer destabilized by dodecyl-beta-maltoside or dodecyl-beta-thiomaltoside, two detergents widely used in membrane biochemistry.
View Article and Find Full Text PDFWe used atomic force microscopy (AFM) to explore the antigen binding forces of individual Fv fragments of antilysozyme antibodies (Fv). To detect single molecular recognition events, genetically engineered histidine-tagged Fv fragments were coupled onto AFM tips modified with mixed self-assembled monolayers (SAMs) of nitrilotriacetic acid- and tri(ethylene glycol)-terminated alkanethiols while lysozyme (Lyso) was covalently immobilized onto mixed SAMs of carboxyl- and hydroxyl-terminated alkanethiols. The quality of the functionalization procedure was validated using X-ray photoelectron spectroscopy (surface chemical composition), AFM imaging (surface morphology in aqueous solution), and surface plasmon resonance (SPR, specific binding in aqueous solution).
View Article and Find Full Text PDFDocosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid that inhibits T lymphocyte activation, has been shown to stimulate phospholipase D (PLD) activity in stimulated human peripheral blood mononuclear cells (PBMC). To elucidate the mechanisms underlying the DHA-induced PLD activation, we first characterized the PLD expression pattern of PBMC. We show that these cells express PLD1 and PLD2 at the protein and mRNA level and are devoid of oleate-dependent PLD activity.
View Article and Find Full Text PDF