Publications by authors named "Alexandre Beraud"

Many physical and chemical properties of the light rare-earths and actinides are governed by the active role of f electrons, and despite intensive efforts the details of the mechanisms of phase stability and transformation are not fully understood. A prominent example which has attracted a lot of interest, both experimentally and theoretically over the years is the isostructural γ - α transition in cerium. We have determined by inelastic X-ray scattering, the complete phonon dispersion scheme of elemental cerium across the γ → α transition, and compared it with theoretical results using ab initio lattice dynamics.

View Article and Find Full Text PDF

Current understanding of electrostatics in water is based on mean-field theories like the Poisson-Boltzmann formalism and its approximations, which are routinely used in colloid science and computational biology. This approach, however, breaks down for highly charged systems, which exhibit counterintuitive phenomena such as overcharging and like-charge attraction. Models of counterion correlations have been proposed as possible explanations, but no experimental comparisons are available.

View Article and Find Full Text PDF

We have determined the lattice dynamics of molybdenum at high pressure to 37 GPa using high-resolution inelastic x-ray scattering. Over the investigated pressure range, we find a significant decrease in the H-point phonon anomaly. We also present calculations based on density functional theory that accurately predict this pressure dependence.

View Article and Find Full Text PDF

The longitudinal acoustic and optical phonon branches along the Gamma-X direction of MgO at 35 GPa have been determined by inelastic x-ray scattering using synchrotron radiation and a diamond-anvil cell. The experimentally observed phonon branches are in remarkable agreement with ab initio lattice dynamics results. The derived thermodynamic properties, such as the specific heat CV and the entropy S are in very good accord with values obtained from a thermodynamically assessed data set involving measured data on molar volume, heat capacity at constant pressure, bulk modulus and thermal expansion.

View Article and Find Full Text PDF