Publications by authors named "Alexandre Baffet"

During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking.

View Article and Find Full Text PDF

The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids.

View Article and Find Full Text PDF

A high number of genetic mutations associated with cortical malformations are found in genes coding for microtubule-related factors. This has stimulated research to understand how the various microtubule-based processes are regulated to build a functional cerebral cortex. Here, we focus our review on the radial glial progenitor cells, the stem cells of the developing neocortex, summarizing research mostly performed in rodents and humans.

View Article and Find Full Text PDF

Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post-Golgi secretory pathway.

View Article and Find Full Text PDF

How the brain develops and achieves its final size is a fascinating issue that questions cortical evolution across species and man's place in the animal kingdom. Although animal models have so far been highly valuable in understanding the key steps of cortical development, many human specificities call for appropriate models. In particular, microcephaly, a neurodevelopmental disorder that is characterized by a smaller head circumference has been challenging to model in mice, which often do not fully recapitulate the human phenotype.

View Article and Find Full Text PDF

Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death.

View Article and Find Full Text PDF

Basal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood.

View Article and Find Full Text PDF

Neurons of the neocortex are generated by stem cells called radial glial cells. These polarized cells extend a short apical process toward the ventricular surface and a long basal fiber that acts as a scaffold for neuronal migration. How the microtubule cytoskeleton is organized in these cells to support long-range transport is unknown.

View Article and Find Full Text PDF

A functional bipolar spindle is essential to segregate chromosomes correctly during mitosis. Across organisms and cell types, spindle architecture should be optimized to promote error-free divisions. However, it remains to be investigated whether mitotic spindle morphology adapts to changes in tissue properties, typical of embryonic development, in order to ensure different tasks, such as spindle positioning and chromosome segregation.

View Article and Find Full Text PDF

Cancer cells' ability to migrate through constricting pores in the tissue matrix is limited by nuclear stiffness. MT1-MMP contributes to metastasis by widening matrix pores, facilitating confined migration. Here, we show that modulation of matrix pore size or of lamin A expression known to modulate nuclear stiffness directly impinges on levels of MT1-MMP-mediated pericellular collagenolysis by cancer cells.

View Article and Find Full Text PDF

Microlissencephaly is a rare brain malformation characterized by congenital microcephaly and lissencephaly. Microlissencephaly is suspected to result from abnormalities in the proliferation or survival of neural progenitors. Despite the recent identification of six genes involved in microlissencephaly, the pathophysiological basis of this condition remains poorly understood.

View Article and Find Full Text PDF

The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV), can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV) and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects.

View Article and Find Full Text PDF

Development of the cerebral cortex is a very dynamic process, involving a series of complex morphogenetic events. Following division of progenitor cells in the ventricular zone, neurons undergo a series of morphological changes and migrate outward toward the cortical plate, where they differentiate and integrate into functional circuits. Errors at several of stages during neurogenesis and migration cause a variety of severe cortical malformations.

View Article and Find Full Text PDF

Dynein recruitment to the nuclear envelope is required for pre-mitotic nucleus-centrosome interactions in nonneuronal cells and for apical nuclear migration in neural stem cells. In each case, dynein is recruited to the nuclear envelope (NE) specifically during G2 via two nuclear pore-mediated mechanisms involving RanBP2-BicD2 and Nup133-CENP-F. The mechanisms responsible for cell-cycle control of this behavior are unknown.

View Article and Find Full Text PDF

Radial glial progenitors (RGPs) are elongated epithelial cells that give rise to neurons, glia, and adult stem cells during brain development. RGP nuclei migrate basally during G1, apically using cytoplasmic dynein during G2, and undergo mitosis at the ventricular surface. By live imaging of in utero electroporated rat brain, we find that two distinct G2-specific mechanisms for dynein nuclear pore recruitment are essential for apical nuclear migration.

View Article and Find Full Text PDF

Located in the 16th century Wiston House in West Sussex, UK, the 'Building a Centrosome' Workshop was organised by The Company of Biologists and chaired by Fanni Gergely and David Glover (University of Cambridge). Held in March 2013, the Workshop gathered together many of the leaders in the field of centrosome biology, as well as postdocs and students who were given the opportunity to meet and interact with many of the scientists who inspired their early careers. The diverse range of speakers provided a multi-disciplinary forum for the exchange of ideas, and gave fresh impetus to tackling outstanding questions related to centrosome biology.

View Article and Find Full Text PDF

Microtubules (MTs) are essential for cell division, shape, intracellular transport, and polarity. MT stability is regulated by many factors, including MT-associated proteins and proteins controlling the amount of free tubulin heterodimers available for polymerization. Tubulin-binding cofactors are potential key regulators of free tubulin concentration, since they are required for α-β-tubulin dimerization in vitro.

View Article and Find Full Text PDF

Microtubules (MTs) are essential for many cell features, such as polarity, motility, shape, and vesicle trafficking. Therefore, in a multicellular organism, their organization differs between cell types and during development; however, the control of this process remains elusive. Here, we show that during Drosophila tracheal morphogenesis, MT reorganization is coupled to relocalization of the microtubule organizing centers (MTOC) components from the centrosome to the apical cell domain from where MTs then grow.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono6ed6firvcuc3oo4pn0hukqplurkn99f): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once