There is considerable uncertainty regarding radiation's effects on biodiversity in natural complex ecosystems typically subjected to multiple environmental disturbances and stresses. In this study we characterised the relationships between soil microbial communities and estimated total absorbed dose rates to bacteria, grassy vegetation and trees in the Red Forest region of the Chornobyl Exclusion Zone. Samples were taken from sites of contrasting ecological histories and along burn and no burn areas following a wildfire.
View Article and Find Full Text PDFGiven the increasing pressure on water bodies, it is imperative to explore sustainable methodologies for wastewater treatment and reuse. The simultaneous presence of multiples contaminants in complex wastewater, such as the liquid effluents from biogas plants, can compromise biological treatment effectiveness for reclaiming water. Vertical subsurface flow constructed wetlands were established as low-cost decentralized wastewater treatment technologies to treat the liquid fraction of digestate from municipal organic waste with metals, antibiotics, and antibiotic resistance genes, to allow its reuse in irrigation.
View Article and Find Full Text PDFDrought is one of the main problems linked to climate change that is faced by agriculture, affecting various globally important crops, including sugarcane. Environmentally sustainable strategies have been sought to mitigate the effects of climate change on crops. Among them, the use of beneficial microorganisms offers a promising approach.
View Article and Find Full Text PDFReliable and accurate oxygen-input control, which is critical to maintaining efficient nitrogen removal performance for partial nitritation-anammox (PN-A) process, remains one of the main operational difficulties. In this study, a novel, yet simple system (a simple process for autotrophic nitrogen-removal, SPAN) with precise oxygen-input control was developed to treat ammonium-rich wastewater via PN-A process. SPAN brings oxygen to biomass by circulating water and creating water spray (shower) at the water-air interface, and effectively balances the activities of core functional microorganisms through precise oxygen-input control.
View Article and Find Full Text PDFThe composition of the mammalian gut microbiota can be influenced by a multitude of environmental variables such as diet and infections. Studies investigating the effect of these variables on gut microbiota composition often sample across multiple separate populations and habitat types. In this study we explore how variation in the gut microbiota of the house mouse (Mus musculus domesticus) on the Isle of May, a small island off the east coast of Scotland, is associated with environmental and biological factors.
View Article and Find Full Text PDFBioremediation offers a sustainable approach for removal of polycyclic aromatic hydrocarbons (PAHs) from the environment; however, information regarding the microbial communities involved remains limited. In this study, microbial community dynamics and the abundance of the key gene (PAH-RHDα) encoding a ring hydroxylating dioxygenase involved in PAH degradation were examined during degradation of phenanthrene in a podzolic soil from the site of a former timber treatment facility. The 10,000-fold greater abundance of this gene associated with Gram-positive bacteria found in phenanthrene-amended soil compared to unamended soil indicated the likely role of Gram-positive bacteria in PAH degradation.
View Article and Find Full Text PDFEuropean earthworms have colonised many parts of Australia, although their impact on soil microbial communities remains largely uncharacterised. An experiment was conducted to contrast the responses to Aporrectodea trapezoides introduction between soils from sites with established (Talmo, 64 A. trapezoides m-2) and rare (Glenrock, 0.
View Article and Find Full Text PDFFungi and bacteria are major players in soil biogeochemical cycles, however, most studies linking soil processes to microbial function ignore the potential role of interactions between these groups. A small number of studies have used correlation network analyses to investigate fungal-bacterial co-occurrences in soil, and revealed differences, as well as overlaps, in the ecosystem roles of these groups. These results contradict the view that fungi and bacteria are two distinct functional groups which can be studied in isolation.
View Article and Find Full Text PDFThe soil bacterial community at the Giessen free-air CO2 enrichment (Gi-FACE) experiment was analysed by tag sequencing of the 16S rRNA gene. No substantial effects of CO2 levels on bacterial community composition were detected. However, the soil moisture gradient at Gi-FACE had a significant effect on bacterial community composition.
View Article and Find Full Text PDFCellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers.
View Article and Find Full Text PDFNetwork and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use.
View Article and Find Full Text PDFThe relative abundance of micromonosporas in the bacterial communities inhabiting cellulose baits, water columns, and sediments of two freshwater lakes was determined by quantitative PCR (qPCR) of reverse-transcribed 16S rRNA. Micromonospora spp. were shown to be significant members of the active bacterial population colonizing cellulosic substrates in the lake sediment, and their increased prevalence with greater depth was confirmed by enumeration of CFU.
View Article and Find Full Text PDFUnderstanding rumen microbial ecology is essential for the development of feed systems designed to improve livestock productivity, health and for methane mitigation strategies from cattle. Although rumen microbial communities have been studied previously, few studies have applied next-generation sequencing technologies to that ecosystem. The aim of this study was to characterize changes in microbial community structure arising from feeding dairy cows two widely used diets: pasture and total mixed ration (TMR).
View Article and Find Full Text PDFPCR and quantitative PCR (qPCR) primers targeting the 16S rRNA gene were used to detect and quantify members of the genus Fibrobacter in lake water, sediment and colonized cotton taken from two freshwater lakes. Phylogenetic analysis identified two groups of sequences; those clustered with Fibrobacter succinogenes, the type species, and a defined cluster of clones loosely associated with several Fibrobacter sequences observed previously in clone libraries from freshwater environments. 16S rRNA gene sequences recovered in the same way from soil samples and ovine feces in the surrounding land were all F.
View Article and Find Full Text PDFA number of Micromonospora strains isolated from the water column, sediment, and cellulose baits placed in freshwater lakes were shown to be able to degrade cellulose in lake water without any addition of nutrients. A selective isolation method was also developed to demonstrate that CFU arose from both spores and hyphae that inhabit the lake environment. Gyrase B gene sequencing performed on the isolates identified a number of new centers of variation within Micromonospora, but the most actively cellulolytic strains were recovered in a single cluster that equated with the type species of the genus, M.
View Article and Find Full Text PDF